Mycoplamas are a group of wall-less prokaryotes widely distributed in nature, some of which are pathogenic for humans and animals. There are many lipoproteins anchored on the outer face of the plasma membrane, called ...Mycoplamas are a group of wall-less prokaryotes widely distributed in nature, some of which are pathogenic for humans and animals. There are many lipoproteins anchored on the outer face of the plasma membrane, called lipid-associated membrane proteins (LAMPs). LAMPs are highly antigenic and could undergo phase and size variation, and are recognized by the innate immune system through Toll-like receptors (TLR) 2 and 6. LAMPs can modulate the immune system, and could induce immune cells apoptosis or death. In addition, they may associate with malignant transformation of host cells and are also con-sidered to be cofactors in the progression of AIDS.展开更多
This vision paper discusses the advantages and disadvantages of the three main options for the recycling of rare-earth ele- ments from end-of-life fluorescent lamps: (1) direct re-use of the lamp phosphor mixture; ...This vision paper discusses the advantages and disadvantages of the three main options for the recycling of rare-earth ele- ments from end-of-life fluorescent lamps: (1) direct re-use of the lamp phosphor mixture; (2) separation of the lamp phosphor mixture into the different phosphor components; (3) recovery of the rare-earth content. An overview is given of commercial activities in Europe in the domain of recycling of materials from end-of-life fluorescent lamps and the recovery of rare earths from these lamps. The collection of end-of-life fluorescent lamps is currently driven by a legal framework that prohibited the release of mercury to the environment. The contaminations of the lamp phosphor powders by mercury and by small glass particles of crushed fluorescent lamps are limiting factors in the recycling process. Research should be directed to an advanced clean-up of the reclaimed lamp phosphor fraction, and in particular to the removal of mercury and glass fragments. The recovery of rare earths from the lamp phosphors could be facilitated by taking advantage of the differences in resistance of the different lamp phosphors by chemical attack by inorganic ac- ids and bases.展开更多
The recovery of yttrium is proposed by applying a solid-liquid extraction process using di-2-ethyl hexylphosphoric acid(D2EHPA) as extracting agent.The extracting agents were supported on a macro porous polymeric resi...The recovery of yttrium is proposed by applying a solid-liquid extraction process using di-2-ethyl hexylphosphoric acid(D2EHPA) as extracting agent.The extracting agents were supported on a macro porous polymeric resin XAD-7(solid phase).Yttrium ions extraction and discharge tests were performed,firstly from a synthetic aqueous solution of 100 mg/L Y(liquid phase) at 25℃ with stirring.The effects of pH of aqueous solutions bearing yttrium,volume fraction of extracting agents and the solid/liquid(S/L)ratio on the yttrium recovery were studied.The most favorable conditions for yttrium ions extraction are;20 vol% D_(2)EHPA functionalized resin,pH=1.5 and an S/L ratio of 10 mg/mL The discharge of yttrium ions was done under the same conditions of extraction stage,using a 2 mol/L [H_(2)SO_(4)] as stripping solution.Up to 80% yttrium is extracted,while 75% yttrium is recovered in the striping solution.In all experiments,the reaction equilibrium is reached after 20 min,and the kinetics for the extraction stage was determined as a second-order model.Also,experiments were carried out to discharge the yttriumloaded resins,and it has been determined that the best pH value to strip the Y ions is 1.5.Cyclic tests of extraction and discharge for yttrium ions show that the functionalized resin can work at least five cycles without decreasing its efficiency.Finally,the proposed process was tested in a real solution with Y ions fro m a waste fluorescent la mp powder leached in H_(2)SO_(4),demonstrating the ability to effectively recover yttrium,separating it from various metals from the studied residue.展开更多
The Ba x-0.05MgAl 10O 16+x∶Eu 2+ 0.05 (0.88≤x ≤1.02) phosphors with different Ba 2+ content and the Ba 0.85MgAl 10O 16.94∶Eu 2+ 0.09 phosphors with different fluxes (BaF 2, MgF 2, AlF ...The Ba x-0.05MgAl 10O 16+x∶Eu 2+ 0.05 (0.88≤x ≤1.02) phosphors with different Ba 2+ content and the Ba 0.85MgAl 10O 16.94∶Eu 2+ 0.09 phosphors with different fluxes (BaF 2, MgF 2, AlF 3, BaCl 2, MgCl 2, AlCl 3, H 3BO 3) were prepared by high temperature solid-state reaction method and their luminescence characteristics were studied under 254 nm excitation and vacuum ultraviolet (VUV) excitation. With the increase of the Ba 2+ content, there is an increase in the emission intensity, and when x=0.94, it reaches a maximum. Then, as the Ba 2+ content increases, the emission intensity slowly falls. The fluorides have better flux-effects than chlorides and H 3BO 3. The possible mechanism in the process of particle growth was discussed when fluorides were used as fluxes. The effect of the activator concentration on this system was also investigated. The quenching concentration is 0.13 mol in per mole host.展开更多
基金Project (No. 30570093) supported by the National Natural ScienceFoundation of China
文摘Mycoplamas are a group of wall-less prokaryotes widely distributed in nature, some of which are pathogenic for humans and animals. There are many lipoproteins anchored on the outer face of the plasma membrane, called lipid-associated membrane proteins (LAMPs). LAMPs are highly antigenic and could undergo phase and size variation, and are recognized by the innate immune system through Toll-like receptors (TLR) 2 and 6. LAMPs can modulate the immune system, and could induce immune cells apoptosis or death. In addition, they may associate with malignant transformation of host cells and are also con-sidered to be cofactors in the progression of AIDS.
基金the financial support of the rare earth recycling work (GOA/13/008 and IOF-KP RARE3http://kuleuven.rare3.eu/.) within the Strategic Inorganic Materials Management (SIM2) research program
文摘This vision paper discusses the advantages and disadvantages of the three main options for the recycling of rare-earth ele- ments from end-of-life fluorescent lamps: (1) direct re-use of the lamp phosphor mixture; (2) separation of the lamp phosphor mixture into the different phosphor components; (3) recovery of the rare-earth content. An overview is given of commercial activities in Europe in the domain of recycling of materials from end-of-life fluorescent lamps and the recovery of rare earths from these lamps. The collection of end-of-life fluorescent lamps is currently driven by a legal framework that prohibited the release of mercury to the environment. The contaminations of the lamp phosphor powders by mercury and by small glass particles of crushed fluorescent lamps are limiting factors in the recycling process. Research should be directed to an advanced clean-up of the reclaimed lamp phosphor fraction, and in particular to the removal of mercury and glass fragments. The recovery of rare earths from the lamp phosphors could be facilitated by taking advantage of the differences in resistance of the different lamp phosphors by chemical attack by inorganic ac- ids and bases.
基金Project supported by Secretariat of Research and Postgraduate Studies National Polytechnic Institute (20221369 and 20231939)Consejo Nacional de Ciencia y Tecnologia CONACyT。
文摘The recovery of yttrium is proposed by applying a solid-liquid extraction process using di-2-ethyl hexylphosphoric acid(D2EHPA) as extracting agent.The extracting agents were supported on a macro porous polymeric resin XAD-7(solid phase).Yttrium ions extraction and discharge tests were performed,firstly from a synthetic aqueous solution of 100 mg/L Y(liquid phase) at 25℃ with stirring.The effects of pH of aqueous solutions bearing yttrium,volume fraction of extracting agents and the solid/liquid(S/L)ratio on the yttrium recovery were studied.The most favorable conditions for yttrium ions extraction are;20 vol% D_(2)EHPA functionalized resin,pH=1.5 and an S/L ratio of 10 mg/mL The discharge of yttrium ions was done under the same conditions of extraction stage,using a 2 mol/L [H_(2)SO_(4)] as stripping solution.Up to 80% yttrium is extracted,while 75% yttrium is recovered in the striping solution.In all experiments,the reaction equilibrium is reached after 20 min,and the kinetics for the extraction stage was determined as a second-order model.Also,experiments were carried out to discharge the yttriumloaded resins,and it has been determined that the best pH value to strip the Y ions is 1.5.Cyclic tests of extraction and discharge for yttrium ions show that the functionalized resin can work at least five cycles without decreasing its efficiency.Finally,the proposed process was tested in a real solution with Y ions fro m a waste fluorescent la mp powder leached in H_(2)SO_(4),demonstrating the ability to effectively recover yttrium,separating it from various metals from the studied residue.
文摘The Ba x-0.05MgAl 10O 16+x∶Eu 2+ 0.05 (0.88≤x ≤1.02) phosphors with different Ba 2+ content and the Ba 0.85MgAl 10O 16.94∶Eu 2+ 0.09 phosphors with different fluxes (BaF 2, MgF 2, AlF 3, BaCl 2, MgCl 2, AlCl 3, H 3BO 3) were prepared by high temperature solid-state reaction method and their luminescence characteristics were studied under 254 nm excitation and vacuum ultraviolet (VUV) excitation. With the increase of the Ba 2+ content, there is an increase in the emission intensity, and when x=0.94, it reaches a maximum. Then, as the Ba 2+ content increases, the emission intensity slowly falls. The fluorides have better flux-effects than chlorides and H 3BO 3. The possible mechanism in the process of particle growth was discussed when fluorides were used as fluxes. The effect of the activator concentration on this system was also investigated. The quenching concentration is 0.13 mol in per mole host.