Friction factor and heat transfer coefficient of liquid flow with variable properties can significantly differ from that with constant properties. Existing equations obtained by regression analysis of experimental dat...Friction factor and heat transfer coefficient of liquid flow with variable properties can significantly differ from that with constant properties. Existing equations obtained by regression analysis of experimental data use correction factors to account for variable property effect. They are limited to specific kind of fluid and low or medium temperature differences. The correction factors of the equations for heating and cooling conditions are different. New explicit friction factor and Nusselt number equations for laminar forced convection of liquid with variable properties are derived with a first order approximation of dynamic viscosity-temperature variation. The new equations are applicable to all kinds of liquids and can be used for large temperature differences. Governing equations of laminar forced convection of water and ethanol are numerically solved using computational fluid dynamics(CFD)method and the results are used to verify the derived equations. The derived equations show good predictions of friction factors and Nusselt numbers for both heating and cooling conditions and show more accurate predictions than the existing equations. A dimensionless number is also introduced based on theoretical analysis to evaluate property variation effects on friction factors and heat transfer coefficients.展开更多
In the current study, a numerical investigation of three-dimensional combined convection-radiation heat transfer over an inclined forward facing step (FFS) in a horizontal rectangular duct is presented. The fluid is t...In the current study, a numerical investigation of three-dimensional combined convection-radiation heat transfer over an inclined forward facing step (FFS) in a horizontal rectangular duct is presented. The fluid is treated as a gray, absorbing, emitting and scattering medium. To simulate the incline surface of FFS, the blocked-off method is employed in this study. The set of governing equations for gas flow are solved numerically using the CFD technique to obtain the temperature and velocity fields. Since the gas is considered as a radiating medium, all of the convection, conduction and radiation heat transfer mechanisms are presented in the energy equation. For computation of radiative term in energy equation, the radiative transfer equation (RTE) is solved numerically by the discrete ordinates method (DOM) to find the divergence of radiative heat flux distribution inside the radiating medium. The effects of optical thickness, radiation-conduction parameter and albedo coefficient on heat transfer behavior of the system are carried out.展开更多
In this paper, a numerical study of a buried hemispherical double-pipe heat exchanger with soil by using geothermal energy is presented. Since the local air-wall exchange coefficient throughout the heat exchanger is u...In this paper, a numerical study of a buried hemispherical double-pipe heat exchanger with soil by using geothermal energy is presented. Since the local air-wall exchange coefficient throughout the heat exchanger is unknown, a study of mathematics based on the theory of Green’s functions in the unsteady state was developed. The complexity of the geometry has led us to develop a numerical study that allows us to obtain results that reflect the importance of heat exchange. The applications are numerous, especially in the storage of energy in the soil to optimize greenhouses according to the cycle of the seasons.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51576103)the National S&T Major Project(Grant No.ZX06901)
文摘Friction factor and heat transfer coefficient of liquid flow with variable properties can significantly differ from that with constant properties. Existing equations obtained by regression analysis of experimental data use correction factors to account for variable property effect. They are limited to specific kind of fluid and low or medium temperature differences. The correction factors of the equations for heating and cooling conditions are different. New explicit friction factor and Nusselt number equations for laminar forced convection of liquid with variable properties are derived with a first order approximation of dynamic viscosity-temperature variation. The new equations are applicable to all kinds of liquids and can be used for large temperature differences. Governing equations of laminar forced convection of water and ethanol are numerically solved using computational fluid dynamics(CFD)method and the results are used to verify the derived equations. The derived equations show good predictions of friction factors and Nusselt numbers for both heating and cooling conditions and show more accurate predictions than the existing equations. A dimensionless number is also introduced based on theoretical analysis to evaluate property variation effects on friction factors and heat transfer coefficients.
文摘In the current study, a numerical investigation of three-dimensional combined convection-radiation heat transfer over an inclined forward facing step (FFS) in a horizontal rectangular duct is presented. The fluid is treated as a gray, absorbing, emitting and scattering medium. To simulate the incline surface of FFS, the blocked-off method is employed in this study. The set of governing equations for gas flow are solved numerically using the CFD technique to obtain the temperature and velocity fields. Since the gas is considered as a radiating medium, all of the convection, conduction and radiation heat transfer mechanisms are presented in the energy equation. For computation of radiative term in energy equation, the radiative transfer equation (RTE) is solved numerically by the discrete ordinates method (DOM) to find the divergence of radiative heat flux distribution inside the radiating medium. The effects of optical thickness, radiation-conduction parameter and albedo coefficient on heat transfer behavior of the system are carried out.
文摘In this paper, a numerical study of a buried hemispherical double-pipe heat exchanger with soil by using geothermal energy is presented. Since the local air-wall exchange coefficient throughout the heat exchanger is unknown, a study of mathematics based on the theory of Green’s functions in the unsteady state was developed. The complexity of the geometry has led us to develop a numerical study that allows us to obtain results that reflect the importance of heat exchange. The applications are numerous, especially in the storage of energy in the soil to optimize greenhouses according to the cycle of the seasons.