The morphology and electronic structure of a Li4Ti5012 anode are known to determine its electrical and electrochemical properties in lithium rechargeable batteries. Ag-Li4Ti5012 nanofibers have been rationally designe...The morphology and electronic structure of a Li4Ti5012 anode are known to determine its electrical and electrochemical properties in lithium rechargeable batteries. Ag-Li4Ti5012 nanofibers have been rationally designed and synthesized by an electrospinning technique to meet the requirements of one-dimensional (1D) morphology and superior electrical conductivity. Herein, we have found that the 1D Ag-Li4Ti5012 nanofibers show enhanced specific capacity, rate capability, and cycling stability compared to bare Li4Ti5012 nanofibers, due to the Ag nanoparticles (〈5 nm), which are mainly distributed at interfaces between Li4Ti5O12 primary particles. This structural morphology gives rise to 20% higher rate capability than bare Li4Ti5O12 nanofibers by facilitating the charge transfer kinetics. Our findings provide an effective way to improve the electrochemical performance of Li4Ti5O12 anodes for lithium rechargeable batteries.展开更多
Severe capacity fading and poor high rate performance of lithium sulfur(Li–S) battery caused by "shuttle effect" and low conductivity of sulfur hampers its further developments and applications. Li_4Ti_5O_(...Severe capacity fading and poor high rate performance of lithium sulfur(Li–S) battery caused by "shuttle effect" and low conductivity of sulfur hampers its further developments and applications. Li_4Ti_5O_(12) (LTO)possesses high lithium ion conductivity, and it is also can be used as an active adsorbent for polysulfide. Herein, fine LTO particle coated carbon nanofibers(CNF) were prepared and a conductive network both for electron and lithium ion was built, which can greatly promote the electrochemical conversion of polysulfide and improve the rate performance of Li–S batteries. Meanwhile, a quantity of adsorption sites is constructed by defects of the surface of LTO-CNF membrane to effectively immobilize polysulfide. The multifunctional LTO-CNF interlayer could impede the shuttle effect and enhance comprehensive electrochemical performance of Li–S batteries, especially high rate performance. With such LTO-CNF interlayer,the Li–S battery presents a specific capacity of 641.9 mAh/g at 5 C rate. After 400 cycles at 1 C, a capacity of 618.0 mAh/g is retained. This work provides a feasible strategy to achieve high performance of Li–S battery for practical utilization.展开更多
Rechargeable Li batteries as electrochemical energy storage and conversion devices are continuously changing human life. In order to meet the increasing demand for energy and power density, it is essential and urgent ...Rechargeable Li batteries as electrochemical energy storage and conversion devices are continuously changing human life. In order to meet the increasing demand for energy and power density, it is essential and urgent to exploit the electrode materials with high capacity and fast charge transfer(for Li-ion and Li-S batteries) and electrocatalysts with high activity(for rechargeable Li-O2 batteries). The high capacity is attributed to high electron transfer number and low molecular weight of the electrode materials. Combined with proper nanostructure design, the electronic transfer and ionic conductivity will be improved. This review summarizes recent efforts to apply electrode materials for Li-ion batteries with multi-electron reaction, Li-S batteries, and efficient electrocatalysts for Li-O2 batteries. The methods to enhance the cycling and rate performance have been discussed in detail. Advanced rechargeable Li batteries with multi-electron reaction will become the research emphasis in the future.展开更多
文摘The morphology and electronic structure of a Li4Ti5012 anode are known to determine its electrical and electrochemical properties in lithium rechargeable batteries. Ag-Li4Ti5012 nanofibers have been rationally designed and synthesized by an electrospinning technique to meet the requirements of one-dimensional (1D) morphology and superior electrical conductivity. Herein, we have found that the 1D Ag-Li4Ti5012 nanofibers show enhanced specific capacity, rate capability, and cycling stability compared to bare Li4Ti5012 nanofibers, due to the Ag nanoparticles (〈5 nm), which are mainly distributed at interfaces between Li4Ti5O12 primary particles. This structural morphology gives rise to 20% higher rate capability than bare Li4Ti5O12 nanofibers by facilitating the charge transfer kinetics. Our findings provide an effective way to improve the electrochemical performance of Li4Ti5O12 anodes for lithium rechargeable batteries.
基金supported by the National Key Basic Research Program of China (2014CB932400)the National Natural Science Foundation of China (51672156 and 51232005)+3 种基金Guangdong special support program (2015TQ01N401)Guangdong Province Technical Plan Project (2017B010119001 and 2017B090907005)Dongguan City (2015509119213)Shenzhen Technical Plan Project (JCYJ20170817161221958, JCYJ20170412170706047, JCYJ20170307153806471, and GJHS20170314165324888)
文摘Severe capacity fading and poor high rate performance of lithium sulfur(Li–S) battery caused by "shuttle effect" and low conductivity of sulfur hampers its further developments and applications. Li_4Ti_5O_(12) (LTO)possesses high lithium ion conductivity, and it is also can be used as an active adsorbent for polysulfide. Herein, fine LTO particle coated carbon nanofibers(CNF) were prepared and a conductive network both for electron and lithium ion was built, which can greatly promote the electrochemical conversion of polysulfide and improve the rate performance of Li–S batteries. Meanwhile, a quantity of adsorption sites is constructed by defects of the surface of LTO-CNF membrane to effectively immobilize polysulfide. The multifunctional LTO-CNF interlayer could impede the shuttle effect and enhance comprehensive electrochemical performance of Li–S batteries, especially high rate performance. With such LTO-CNF interlayer,the Li–S battery presents a specific capacity of 641.9 mAh/g at 5 C rate. After 400 cycles at 1 C, a capacity of 618.0 mAh/g is retained. This work provides a feasible strategy to achieve high performance of Li–S battery for practical utilization.
基金supported by the State Key Project of Fundamental Research for Nanoscience and Nanotechnology (2011CB935900)the National Science Foundation of China (NSFC) (21322101, 21231005)the Ministry of Education (B12015, IRT13R30, 113016A)
文摘Rechargeable Li batteries as electrochemical energy storage and conversion devices are continuously changing human life. In order to meet the increasing demand for energy and power density, it is essential and urgent to exploit the electrode materials with high capacity and fast charge transfer(for Li-ion and Li-S batteries) and electrocatalysts with high activity(for rechargeable Li-O2 batteries). The high capacity is attributed to high electron transfer number and low molecular weight of the electrode materials. Combined with proper nanostructure design, the electronic transfer and ionic conductivity will be improved. This review summarizes recent efforts to apply electrode materials for Li-ion batteries with multi-electron reaction, Li-S batteries, and efficient electrocatalysts for Li-O2 batteries. The methods to enhance the cycling and rate performance have been discussed in detail. Advanced rechargeable Li batteries with multi-electron reaction will become the research emphasis in the future.