电力市场环境下,精准的短期负荷预测可以保障电网安全稳定运行,但电价的实时波动增加了负荷变化的复杂性,加大了预测难度。针对这一问题,采用最大信息系数法分析电价及历史负荷与当前时刻负荷的相关性,为预测模型输入特征的确定提供依...电力市场环境下,精准的短期负荷预测可以保障电网安全稳定运行,但电价的实时波动增加了负荷变化的复杂性,加大了预测难度。针对这一问题,采用最大信息系数法分析电价及历史负荷与当前时刻负荷的相关性,为预测模型输入特征的确定提供依据。在此基础上,提出了基于Attention-LSTM (attention long short-term memory,Attention-LSTM)网络的短期负荷预测模型。该模型充分利用负荷的时序特性,并采用Attention机制突出对负荷预测起到关键作用的输入特征。以澳大利亚某地区真实数据为算例,分别应用Attention-LSTM模型与其他模型进行仿真实验。结果表明,所提方法在预测精度和算法鲁棒性方面均优于其他模型。展开更多
长短时记忆(long short term memory,LSTM)是一种有效的链式循环神经网络(recurrent neural network,R2 NN1),被广泛用于语言模型、机器翻译、语音识别等领域。但由于该网络结构是一种链式结构,不能有效表征语言的结构层次信息,该文将L...长短时记忆(long short term memory,LSTM)是一种有效的链式循环神经网络(recurrent neural network,R2 NN1),被广泛用于语言模型、机器翻译、语音识别等领域。但由于该网络结构是一种链式结构,不能有效表征语言的结构层次信息,该文将LSTM扩展到基于树结构的递归神经网络(Recursive Neural Network,RNN)上,用于捕获文本更深层次的语义语法信息,并根据句子前后词语间的关联性引入情感极性转移模型。实验证明本文提出的模型优于LSTM、递归神经网络等。展开更多
为了减少复杂环境因素对电力负荷超短期预测效果的影响,提高算法的预测精度和运算效率,该文提出一种基于聚类经验模态分解(clusterempiricalmodedecomposition,CEMD)的卷积神经网络和长短期记忆网络(convolutional neural network and l...为了减少复杂环境因素对电力负荷超短期预测效果的影响,提高算法的预测精度和运算效率,该文提出一种基于聚类经验模态分解(clusterempiricalmodedecomposition,CEMD)的卷积神经网络和长短期记忆网络(convolutional neural network and long short term memory network,CNNLSTM)混合预测算法。该算法首先通过经验模态分解法将负荷数据分解为平稳性好、规律性强的若干本征模态函数(intrinsic mode functions,IMF)和残差(residual,Res)。其次为了简化后续模型的计算体量,运用k均值聚类方法对分解所得的各分量进行分组集成,同时分析不同聚类数对应的预测效果,选取最优聚类标签构造神经网络输入数据。之后将各组数据分别输入到CNN-LSTM混合神经网络中,利用CNN挖掘数据间的特征形成特征向量,并将其输入到LSTM中进行预测。最后将所有预测结果进行线性相加得到完整预测负荷。通过在真实负荷上进行验证并与现有模型进行比较,所提方法具有更高的预测精度。展开更多
文章提出了一种基于长短期记忆网络(long short term memory network,LSTM),面向光伏发电功率预测的数字孪生模型,并通过迁移学习将此模型应用到其他投入运行时间较短、数据不足的光伏系统发电功率预测中。光伏发电功率由于受到太阳辐...文章提出了一种基于长短期记忆网络(long short term memory network,LSTM),面向光伏发电功率预测的数字孪生模型,并通过迁移学习将此模型应用到其他投入运行时间较短、数据不足的光伏系统发电功率预测中。光伏发电功率由于受到太阳辐照度、温度和一些随机因素的影响,具有较强的间歇性和波动性,因此很难进行精确的光伏功率预测;所提出的数字孪生模型,实现了与光伏系统物理实体的同步和实时更新,因此获得比传统预测方法更准确的预测结果,同时利用从历史数据充足的光伏系统中学到的知识来辅助历史数据有限的光伏系统建立发电功率预测数字孪生模型,不仅可以得到精确的预测结果而且节省了模型训练时间。文中通过Queensland大学开源网站中3个不同站点以及山西晋能清洁能源公司的光伏历史数据验证了所提方法的有效性。展开更多
文摘电力市场环境下,精准的短期负荷预测可以保障电网安全稳定运行,但电价的实时波动增加了负荷变化的复杂性,加大了预测难度。针对这一问题,采用最大信息系数法分析电价及历史负荷与当前时刻负荷的相关性,为预测模型输入特征的确定提供依据。在此基础上,提出了基于Attention-LSTM (attention long short-term memory,Attention-LSTM)网络的短期负荷预测模型。该模型充分利用负荷的时序特性,并采用Attention机制突出对负荷预测起到关键作用的输入特征。以澳大利亚某地区真实数据为算例,分别应用Attention-LSTM模型与其他模型进行仿真实验。结果表明,所提方法在预测精度和算法鲁棒性方面均优于其他模型。
文摘长短时记忆(long short term memory,LSTM)是一种有效的链式循环神经网络(recurrent neural network,R2 NN1),被广泛用于语言模型、机器翻译、语音识别等领域。但由于该网络结构是一种链式结构,不能有效表征语言的结构层次信息,该文将LSTM扩展到基于树结构的递归神经网络(Recursive Neural Network,RNN)上,用于捕获文本更深层次的语义语法信息,并根据句子前后词语间的关联性引入情感极性转移模型。实验证明本文提出的模型优于LSTM、递归神经网络等。
文摘为了减少复杂环境因素对电力负荷超短期预测效果的影响,提高算法的预测精度和运算效率,该文提出一种基于聚类经验模态分解(clusterempiricalmodedecomposition,CEMD)的卷积神经网络和长短期记忆网络(convolutional neural network and long short term memory network,CNNLSTM)混合预测算法。该算法首先通过经验模态分解法将负荷数据分解为平稳性好、规律性强的若干本征模态函数(intrinsic mode functions,IMF)和残差(residual,Res)。其次为了简化后续模型的计算体量,运用k均值聚类方法对分解所得的各分量进行分组集成,同时分析不同聚类数对应的预测效果,选取最优聚类标签构造神经网络输入数据。之后将各组数据分别输入到CNN-LSTM混合神经网络中,利用CNN挖掘数据间的特征形成特征向量,并将其输入到LSTM中进行预测。最后将所有预测结果进行线性相加得到完整预测负荷。通过在真实负荷上进行验证并与现有模型进行比较,所提方法具有更高的预测精度。
文摘文章提出了一种基于长短期记忆网络(long short term memory network,LSTM),面向光伏发电功率预测的数字孪生模型,并通过迁移学习将此模型应用到其他投入运行时间较短、数据不足的光伏系统发电功率预测中。光伏发电功率由于受到太阳辐照度、温度和一些随机因素的影响,具有较强的间歇性和波动性,因此很难进行精确的光伏功率预测;所提出的数字孪生模型,实现了与光伏系统物理实体的同步和实时更新,因此获得比传统预测方法更准确的预测结果,同时利用从历史数据充足的光伏系统中学到的知识来辅助历史数据有限的光伏系统建立发电功率预测数字孪生模型,不仅可以得到精确的预测结果而且节省了模型训练时间。文中通过Queensland大学开源网站中3个不同站点以及山西晋能清洁能源公司的光伏历史数据验证了所提方法的有效性。