In this paper we establish the notion of the space of bounded ?(p(⋅), 2)variation in De la Vallée Poussin-Wiener’s sense with variable exponent. We show some properties of this space and we show that an...In this paper we establish the notion of the space of bounded ?(p(⋅), 2)variation in De la Vallée Poussin-Wiener’s sense with variable exponent. We show some properties of this space and we show that any uniformly bounded composition operator that maps this space into itself necessarily satisfies the so-called Matkowski’s conditions.展开更多
本文研究带有混合边界的二维Helmholtz方程不适定问题.为了获得稳定的数值解,利用基于de la Vallee Poussin算子的软化正则方法,得到了正则近似解,给出正则近似解与精确解之间在先验参数选取规则之下的误差估计,并通过数值实验检验了数...本文研究带有混合边界的二维Helmholtz方程不适定问题.为了获得稳定的数值解,利用基于de la Vallee Poussin算子的软化正则方法,得到了正则近似解,给出正则近似解与精确解之间在先验参数选取规则之下的误差估计,并通过数值实验检验了数据有噪声扰动时方法的有效性和稳定性.展开更多
文摘In this paper we establish the notion of the space of bounded ?(p(⋅), 2)variation in De la Vallée Poussin-Wiener’s sense with variable exponent. We show some properties of this space and we show that any uniformly bounded composition operator that maps this space into itself necessarily satisfies the so-called Matkowski’s conditions.