针对图像重建过程中噪声去除问题,提出一种自适应加权编码L1/2正则化重建算法。首先,考虑到许多真实图像中不仅含有高斯噪声,而且含有拉普拉斯噪声,设计一种改进的L1-L2混合误差模型(IHEM)算法,该算法兼顾了L1范数与L2范数的各自优点;其...针对图像重建过程中噪声去除问题,提出一种自适应加权编码L1/2正则化重建算法。首先,考虑到许多真实图像中不仅含有高斯噪声,而且含有拉普拉斯噪声,设计一种改进的L1-L2混合误差模型(IHEM)算法,该算法兼顾了L1范数与L2范数的各自优点;其次,由于迭代过程中噪声分布会发生改变,设计一种自适应隶属度算法,该算法可以减少迭代次数和运算时间;利用一种自适应加权编码方法,该方法可以有效地去除含有重尾分布特性的拉普拉斯噪声;另外,设计一种L1/2正则化算法,该算法可以得到较稀疏的解。实验结果表明,相比IHEM算法,自适应L1/2正则化图像重建算法的峰值信噪比(PSNR)平均提高了3.46 d B,结构相似度(SSIM)平均提高了0.02,对含有多种噪声的图像处理具有比较理想的效果。展开更多
We derive a sharp nonasymptotic bound of parameter estimation of the L1/2 regularization. The bound shows that the solutions of the L1/2 regularization can achieve a loss within logarithmic factor of an ideal mean squ...We derive a sharp nonasymptotic bound of parameter estimation of the L1/2 regularization. The bound shows that the solutions of the L1/2 regularization can achieve a loss within logarithmic factor of an ideal mean squared error and therefore underlies the feasibility and effectiveness of the L1/2 regularization. Interestingly, when applied to compressive sensing, the L1/2 regularization scheme has exhibited a very promising capability of completed recovery from a much less sampling information. As compared with the Lp (0 〈 p 〈 1) penalty, it is appeared that the L1/2 penalty can always yield the most sparse solution among all the Lv penalty when 1/2 〈 p 〈 1, and when 0 〈 p 〈 1/2, the Lp penalty exhibits the similar properties as the L1/2 penalty. This suggests that the L1/2 regularization scheme can be accepted as the best and therefore the representative of all the Lp (0 〈 p 〈 1) regularization schemes.展开更多
文摘针对图像重建过程中噪声去除问题,提出一种自适应加权编码L1/2正则化重建算法。首先,考虑到许多真实图像中不仅含有高斯噪声,而且含有拉普拉斯噪声,设计一种改进的L1-L2混合误差模型(IHEM)算法,该算法兼顾了L1范数与L2范数的各自优点;其次,由于迭代过程中噪声分布会发生改变,设计一种自适应隶属度算法,该算法可以减少迭代次数和运算时间;利用一种自适应加权编码方法,该方法可以有效地去除含有重尾分布特性的拉普拉斯噪声;另外,设计一种L1/2正则化算法,该算法可以得到较稀疏的解。实验结果表明,相比IHEM算法,自适应L1/2正则化图像重建算法的峰值信噪比(PSNR)平均提高了3.46 d B,结构相似度(SSIM)平均提高了0.02,对含有多种噪声的图像处理具有比较理想的效果。
基金supported by National Natural Science Foundation of China(Grant Nos.11171212 and60975036)supported by National Natural Science Foundation of China(Grant No.6175054)
文摘We derive a sharp nonasymptotic bound of parameter estimation of the L1/2 regularization. The bound shows that the solutions of the L1/2 regularization can achieve a loss within logarithmic factor of an ideal mean squared error and therefore underlies the feasibility and effectiveness of the L1/2 regularization. Interestingly, when applied to compressive sensing, the L1/2 regularization scheme has exhibited a very promising capability of completed recovery from a much less sampling information. As compared with the Lp (0 〈 p 〈 1) penalty, it is appeared that the L1/2 penalty can always yield the most sparse solution among all the Lv penalty when 1/2 〈 p 〈 1, and when 0 〈 p 〈 1/2, the Lp penalty exhibits the similar properties as the L1/2 penalty. This suggests that the L1/2 regularization scheme can be accepted as the best and therefore the representative of all the Lp (0 〈 p 〈 1) regularization schemes.