Monopiles are the most common foundation form of offshore wind turbines,which bear the vertical load,lateral load and bending moment.It remains uncertain whether the applied vertical load increases the lateral deflect...Monopiles are the most common foundation form of offshore wind turbines,which bear the vertical load,lateral load and bending moment.It remains uncertain whether the applied vertical load increases the lateral deflection of the pile.This paper investigated the influence of vertical load on the behaviour of monopiles installed in the sand under combined load using three-dimensional numerical methods.The commercial software PLAXIS was used for simulations in this paper.Monopiles were modelled as a structure incorporating linear elastic material behaviour and soil was modelled using the Hardening-Soil(HS)constitutive model.The monopiles under vertical load,lateral load and combined vertical and lateral loads were respectively studied taking into account the sequence of load application and pile slenderness ratio(L/D;L and D are the length and diameter of the pile).Results suggest that the sequence of load application plays a major role in how vertical load affects the deflection behaviour of the pile.Specifically,when L/D ratios obtained by lengthening the pile while keeping its diameter constant are 3,5 and 8,the relationships between lateral load and the deflection behaviour of the pile under the effect of vertical load demonstrate a similar trend.Furthermore,the cause of increased lateral capacity of the pile under the action of applied vertical load in the common practical application case and in the VPL case was analyzed by studying the variation law of soil stress along the pile embedment.Results confirm that the confining effect of vertical load increases means effective stress of the soil around the pile,thus increasing soil stiffness and pile capacity.展开更多
An experiment was conducted during Kharif seasons of 2009 and 2010 on sandy loam soil of West Bengal, India to evaluate the productivity and economic viability of maize + legume intercropping systems in additive as w...An experiment was conducted during Kharif seasons of 2009 and 2010 on sandy loam soil of West Bengal, India to evaluate the productivity and economic viability of maize + legume intercropping systems in additive as well as in replacement series with different row proportions. Maize (Zea rnays L.) cv. "Vijay" (composite), green gram (Vigna radiata L.) cv. "Samrat", black gram (Vigna mungo L.) cv. "Sarada", soybean (Glycine max L. Merril) cv. "PK 327" and peanut (Arachis hypogaea L.) cv. "JL 24", were tested in monoculture as well as in intercropping situations with 1:1 (additive series) and 1:2 ratios (replacement series). The result indicated that intercropped legumes improved the yield components of maize and offered some bonus yield. The highest maize grain yield (2,916.28 kg/ha) and maize equivalent yield (4,831.45 kg/ha) were recorded with maize + green gram (1:1) and maize + peanut (1:I), respectively. The values of all the competition functions were always greater than unity and maize + black gram (1:2) recorded the highest values of land equivalent ratio (1.433), area time equivalent ratio (1.374) and land equivalent coefficient (0.421). Maximum monetary advantage (Rs. 10,579.13) was found with maize + green gam (l:1). Maize + peanut (1:2) combination recorded the highest relative net return (2.01), net return (Rs. 28,523.08), benefit-cost ratio (2.76) ad per day return (Rs. 259.30).展开更多
Monopiles are the most common foundation form of offshore wind turbines,which bear the vertical load,lateral load and bending moment.It remains uncertain whether the applied vertical load increases the lateral deflect...Monopiles are the most common foundation form of offshore wind turbines,which bear the vertical load,lateral load and bending moment.It remains uncertain whether the applied vertical load increases the lateral deflection of the pile.This paper investigated the influence of vertical load on the behaviour of monopiles installed in the sand under combined load using three-dimensional numerical methods.The commercial software PLAXIS was used for simulations in this paper.Monopiles were modelled as a structure incorporating linear elastic material behaviour and soil was modelled using the Hardening-Soil(HS)constitutive model.The monopiles under vertical load,lateral load and combined vertical and lateral loads were respectively studied taking into account the sequence of load application and pile slenderness ratio(L/D;L and D are the length and diameter of the pile).Results suggest that the sequence of load application plays a major role in how vertical load affects the deflection behaviour of the pile.Specifically,when L/D ratios obtained by lengthening the pile while keeping its diameter constant are 3,5 and 8,the relationships between lateral load and the deflection behaviour of the pile under the effect of vertical load demonstrate a similar trend.Furthermore,the cause of increased lateral capacity of the pile under the action of applied vertical load in the common practical application case and in the VPL case was analyzed by studying the variation law of soil stress along the pile embedment.Results confirm that the confining effect of vertical load increases means effective stress of the soil around the pile,thus increasing soil stiffness and pile capacity.展开更多
Enhancing host immunity is an effective way to reduce morbidity in chickens.Heterophil to lymphocyte ratio(H/L)is associated with host disease resistance in birds.Chickens with different H/L levels show different dise...Enhancing host immunity is an effective way to reduce morbidity in chickens.Heterophil to lymphocyte ratio(H/L)is associated with host disease resistance in birds.Chickens with different H/L levels show different disease resistances.However,the utility of the H/L as an indicator of immune function needs to be further analyzed.In this study,a H/L directional breeding chicken line(Jingxing yellow chicken)was constructed,which has been bred for 12 generations.We compared the function of heterophils,and combined statistical analysis to explore the candidate genes and pathways related to H/L.The oxidative burst function of the heterophils isolated from the H/L selection line(G12)was increased(P=0.044)compared to the non-selection line(NS).The 22.44 Mb genomic regions which annotated 300 protein-coding genes were selected in the genome of G9(n=92)compared to NS(n=92)based on a genome-wide selective sweep.Several selective regions were identified containing genes like interferon induced with helicase C domain 1(IFIH1)and moesin(MSN)associated with the intracellular receptor signaling pathway,C–C motif chemokine receptor 6(CCR6),dipeptidyl peptidase 4(DPP4)and hemolytic complement(HC)associated with the negative regulation of leukocyte chemotaxis and tight junction protein 1(TJP1)associated with actin cytoskeleton organization.In addition,45 genome-wide significant indels containing 29 protein-coding genes were also identified as associated with the H/L based on genome-wide association study(GWAS).The expression of protein tyrosine phosphatase non-receptor type 5(PTPN5)(r=0.75,P=0.033)and oxysterol binding protein like 5(OSBPL5)(r=0.89,P=0.0027)were positively correlated with H/L.Compared to the high H/L group,the expressions of PTPN5 and OSBPL5 were decreased(P<0.05)in the low H/L group of Beijing you chicken.The A/A allelic frequency of indel 5_13108985(P=3.85E–06)within OSBPL5 gradually increased from the NS to G5 and G9,and the individuals with A/A exhibited lower H/L than individuals with heterozygote A/ATCT(P=4展开更多
Metal additive manufacturing(AM),as a disruptive technology in the feld of fabricating metallic parts,has shown its ability to design component with macrostructural complexity.However,some of these functionally comple...Metal additive manufacturing(AM),as a disruptive technology in the feld of fabricating metallic parts,has shown its ability to design component with macrostructural complexity.However,some of these functionally complex structures typically contain a wide range of feature sizes,namely,the characteristic length of elements in AM-produced components can vary from millimeter to meter-scale.The requisite for controlling performance covers nearly six orders of magnitude,from the microstructure to macro scale structure.Understanding the mechanical variation with the feature size is of critical importance for topology optimization engineers to make required design decisions.In this work,laser metal deposition(LMD)is adopted to manufacture 316L stainless steel(SS)samples.To evaluate the efect of defects and specimen size on mechanical properties of LMD-produced samples,fve rectangular sample sizes which ranged from non-standard miniature size to ASTM standard sub-sized samples were machined from the block.Tensile test reveals that the mechanical properties including yield strength(YS),ultimate tensile strength(UTS),and elongation to failure(εf)are almost the identical for samples with ASTM standard size.Whilst,relatively lower YS and UTS values,except forεf,are observed for samples with a miniature size compared with that of ASTM standard samples.Theεf values of LMD-produced 316L SS samples show a more complex trend with sample size,and are afected by three key infuencing factors,namely,slimness ratio,cluster of pores,and occupancy location of lack of fusion defects.In general,theεf values exhibit a decreasing trend with the increase of slimness ratio.Microstructure characterization reveals that the LMD-produced 316L samples exhibited a high stress status at low angle grain boundaries,whilst its location changed to high angle grain boundaries after plastic deformation.The grain size refnement and austenite-to-martensite phase transformation occurred during plastic deformation might be responsible for the very high YS 展开更多
Soil organic nitrogen(ON)accounts for more than 90%of the total nitrogen(TN)in paddy soils.Inadequate understanding of the different ON fractions in paddy soils and their corresponding bioavailability under different ...Soil organic nitrogen(ON)accounts for more than 90%of the total nitrogen(TN)in paddy soils.Inadequate understanding of the different ON fractions in paddy soils and their corresponding bioavailability under different climatic conditions has constrained the development of appropriate nutrient management strategies for rice production.In this study,we applied a modified Bremner method coupled with high-performance liquid chromatography to characterize how soil ON fractions and amino acid chirality varied under different climatic conditions at five typical rice production sites along a latitudinal gradient.According to the results,climate had no obvious influence on TN,nitrogen(N)form,and individual amino acid contents.However,the proportions of various N forms in TN had linear relationships with annual mean temperature(AMT),with high correlation coefficient(r)values.Amino acid components also exhibited similar trends,with r as high as 0.85.Most notably,consistent linear relationships were observed between the D/L ratios of several amino acids and AMT in paddy soils(r=0.18–0.92).Findings of this study provide insights into ON and amino acid dynamics in paddy soil systems under intensive production along climate gradients.展开更多
文摘Monopiles are the most common foundation form of offshore wind turbines,which bear the vertical load,lateral load and bending moment.It remains uncertain whether the applied vertical load increases the lateral deflection of the pile.This paper investigated the influence of vertical load on the behaviour of monopiles installed in the sand under combined load using three-dimensional numerical methods.The commercial software PLAXIS was used for simulations in this paper.Monopiles were modelled as a structure incorporating linear elastic material behaviour and soil was modelled using the Hardening-Soil(HS)constitutive model.The monopiles under vertical load,lateral load and combined vertical and lateral loads were respectively studied taking into account the sequence of load application and pile slenderness ratio(L/D;L and D are the length and diameter of the pile).Results suggest that the sequence of load application plays a major role in how vertical load affects the deflection behaviour of the pile.Specifically,when L/D ratios obtained by lengthening the pile while keeping its diameter constant are 3,5 and 8,the relationships between lateral load and the deflection behaviour of the pile under the effect of vertical load demonstrate a similar trend.Furthermore,the cause of increased lateral capacity of the pile under the action of applied vertical load in the common practical application case and in the VPL case was analyzed by studying the variation law of soil stress along the pile embedment.Results confirm that the confining effect of vertical load increases means effective stress of the soil around the pile,thus increasing soil stiffness and pile capacity.
文摘An experiment was conducted during Kharif seasons of 2009 and 2010 on sandy loam soil of West Bengal, India to evaluate the productivity and economic viability of maize + legume intercropping systems in additive as well as in replacement series with different row proportions. Maize (Zea rnays L.) cv. "Vijay" (composite), green gram (Vigna radiata L.) cv. "Samrat", black gram (Vigna mungo L.) cv. "Sarada", soybean (Glycine max L. Merril) cv. "PK 327" and peanut (Arachis hypogaea L.) cv. "JL 24", were tested in monoculture as well as in intercropping situations with 1:1 (additive series) and 1:2 ratios (replacement series). The result indicated that intercropped legumes improved the yield components of maize and offered some bonus yield. The highest maize grain yield (2,916.28 kg/ha) and maize equivalent yield (4,831.45 kg/ha) were recorded with maize + green gram (1:1) and maize + peanut (1:I), respectively. The values of all the competition functions were always greater than unity and maize + black gram (1:2) recorded the highest values of land equivalent ratio (1.433), area time equivalent ratio (1.374) and land equivalent coefficient (0.421). Maximum monetary advantage (Rs. 10,579.13) was found with maize + green gam (l:1). Maize + peanut (1:2) combination recorded the highest relative net return (2.01), net return (Rs. 28,523.08), benefit-cost ratio (2.76) ad per day return (Rs. 259.30).
基金supported by High-Tech Ship Scientific Research Project in 2018(Research on Key Technologies of Polar Small Cruise Ship Design and Construction,Ministry of Industry and Information Technology Packing Letter[2018]No.473Emergency Evacuation Chute System Development,Ministry of Industry and Information Technology Packing Letter[2017]No.614).
文摘Monopiles are the most common foundation form of offshore wind turbines,which bear the vertical load,lateral load and bending moment.It remains uncertain whether the applied vertical load increases the lateral deflection of the pile.This paper investigated the influence of vertical load on the behaviour of monopiles installed in the sand under combined load using three-dimensional numerical methods.The commercial software PLAXIS was used for simulations in this paper.Monopiles were modelled as a structure incorporating linear elastic material behaviour and soil was modelled using the Hardening-Soil(HS)constitutive model.The monopiles under vertical load,lateral load and combined vertical and lateral loads were respectively studied taking into account the sequence of load application and pile slenderness ratio(L/D;L and D are the length and diameter of the pile).Results suggest that the sequence of load application plays a major role in how vertical load affects the deflection behaviour of the pile.Specifically,when L/D ratios obtained by lengthening the pile while keeping its diameter constant are 3,5 and 8,the relationships between lateral load and the deflection behaviour of the pile under the effect of vertical load demonstrate a similar trend.Furthermore,the cause of increased lateral capacity of the pile under the action of applied vertical load in the common practical application case and in the VPL case was analyzed by studying the variation law of soil stress along the pile embedment.Results confirm that the confining effect of vertical load increases means effective stress of the soil around the pile,thus increasing soil stiffness and pile capacity.
基金supported by the grants from the National Natural Science Foundation of China(32072708)the National Key R&D Program of China(2018YFE0128000)the Major Scientific Research Projects of Chinese Academy of Agricultural Sciences(CAAS-ZDRW202005).
文摘Enhancing host immunity is an effective way to reduce morbidity in chickens.Heterophil to lymphocyte ratio(H/L)is associated with host disease resistance in birds.Chickens with different H/L levels show different disease resistances.However,the utility of the H/L as an indicator of immune function needs to be further analyzed.In this study,a H/L directional breeding chicken line(Jingxing yellow chicken)was constructed,which has been bred for 12 generations.We compared the function of heterophils,and combined statistical analysis to explore the candidate genes and pathways related to H/L.The oxidative burst function of the heterophils isolated from the H/L selection line(G12)was increased(P=0.044)compared to the non-selection line(NS).The 22.44 Mb genomic regions which annotated 300 protein-coding genes were selected in the genome of G9(n=92)compared to NS(n=92)based on a genome-wide selective sweep.Several selective regions were identified containing genes like interferon induced with helicase C domain 1(IFIH1)and moesin(MSN)associated with the intracellular receptor signaling pathway,C–C motif chemokine receptor 6(CCR6),dipeptidyl peptidase 4(DPP4)and hemolytic complement(HC)associated with the negative regulation of leukocyte chemotaxis and tight junction protein 1(TJP1)associated with actin cytoskeleton organization.In addition,45 genome-wide significant indels containing 29 protein-coding genes were also identified as associated with the H/L based on genome-wide association study(GWAS).The expression of protein tyrosine phosphatase non-receptor type 5(PTPN5)(r=0.75,P=0.033)and oxysterol binding protein like 5(OSBPL5)(r=0.89,P=0.0027)were positively correlated with H/L.Compared to the high H/L group,the expressions of PTPN5 and OSBPL5 were decreased(P<0.05)in the low H/L group of Beijing you chicken.The A/A allelic frequency of indel 5_13108985(P=3.85E–06)within OSBPL5 gradually increased from the NS to G5 and G9,and the individuals with A/A exhibited lower H/L than individuals with heterozygote A/ATCT(P=4
基金supported by the National Natural Science Foundation of China(Grant No.11772344).
文摘Metal additive manufacturing(AM),as a disruptive technology in the feld of fabricating metallic parts,has shown its ability to design component with macrostructural complexity.However,some of these functionally complex structures typically contain a wide range of feature sizes,namely,the characteristic length of elements in AM-produced components can vary from millimeter to meter-scale.The requisite for controlling performance covers nearly six orders of magnitude,from the microstructure to macro scale structure.Understanding the mechanical variation with the feature size is of critical importance for topology optimization engineers to make required design decisions.In this work,laser metal deposition(LMD)is adopted to manufacture 316L stainless steel(SS)samples.To evaluate the efect of defects and specimen size on mechanical properties of LMD-produced samples,fve rectangular sample sizes which ranged from non-standard miniature size to ASTM standard sub-sized samples were machined from the block.Tensile test reveals that the mechanical properties including yield strength(YS),ultimate tensile strength(UTS),and elongation to failure(εf)are almost the identical for samples with ASTM standard size.Whilst,relatively lower YS and UTS values,except forεf,are observed for samples with a miniature size compared with that of ASTM standard samples.Theεf values of LMD-produced 316L SS samples show a more complex trend with sample size,and are afected by three key infuencing factors,namely,slimness ratio,cluster of pores,and occupancy location of lack of fusion defects.In general,theεf values exhibit a decreasing trend with the increase of slimness ratio.Microstructure characterization reveals that the LMD-produced 316L samples exhibited a high stress status at low angle grain boundaries,whilst its location changed to high angle grain boundaries after plastic deformation.The grain size refnement and austenite-to-martensite phase transformation occurred during plastic deformation might be responsible for the very high YS
基金supported by the National Natural Science Foundation of China(No.41671296)Special Project on the Basis of National Science and Technology of China(No.2015FY110700).
文摘Soil organic nitrogen(ON)accounts for more than 90%of the total nitrogen(TN)in paddy soils.Inadequate understanding of the different ON fractions in paddy soils and their corresponding bioavailability under different climatic conditions has constrained the development of appropriate nutrient management strategies for rice production.In this study,we applied a modified Bremner method coupled with high-performance liquid chromatography to characterize how soil ON fractions and amino acid chirality varied under different climatic conditions at five typical rice production sites along a latitudinal gradient.According to the results,climate had no obvious influence on TN,nitrogen(N)form,and individual amino acid contents.However,the proportions of various N forms in TN had linear relationships with annual mean temperature(AMT),with high correlation coefficient(r)values.Amino acid components also exhibited similar trends,with r as high as 0.85.Most notably,consistent linear relationships were observed between the D/L ratios of several amino acids and AMT in paddy soils(r=0.18–0.92).Findings of this study provide insights into ON and amino acid dynamics in paddy soil systems under intensive production along climate gradients.