Salinity is one of the major abiotic stresses which impose constraints to plant growth and production.Rice(Oryza sativa L.)is one of the most important staple food crops and a model monocot plant.Its production is exp...Salinity is one of the major abiotic stresses which impose constraints to plant growth and production.Rice(Oryza sativa L.)is one of the most important staple food crops and a model monocot plant.Its production is expanding into regions that are affected by soil salinity,requiring cultivars more tolerant to saline conditions.Understanding the molecular mechanisms of such tolerance could lay a foundation for varietal improvement of salt tolerance in rice.In spite of extensive studies exploring the mechanism of salt tolerance,there has been limited progress in breeding for increased salinity tolerance.In this review,we summarize the information about the major molecular mechanisms underlying salinity tolerance in rice and further discuss the limitations in breeding for salinity tolerance.We show that numerous gene families and interaction networks are involved in the regulation of rice responses to salinity,prompting a need for a comprehensive functional analysis.We also show that most studies are based on whole-plant level analyses with only a few reports focused on tissue-and/or cell-specific gene expression.More details of salt-responsive channel and transporter activities at tissue-and cell-specific level still need to be documented before these traits can be incorporated into elite rice germplasm.Thus,future studies should focus on diversity of available genetic resources and,particular,wild rice relatives,to reincorporate salinity tolerance traits lost during domestication.展开更多
Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in a variety of organisms. In plants, its biosynthesis is catalyzed by two key enzymes: trehalose-6-phosphate synthase(TPS) and...Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in a variety of organisms. In plants, its biosynthesis is catalyzed by two key enzymes: trehalose-6-phosphate synthase(TPS) and trehalose-6-phosphate phosphatase(TPP). In the present study, a TPS gene, named IbTPS, was first isolated from sweetpotato(Ipomoea batatas(L.) Lam.) cv. Lushu 3 by rapid amplification of cDNA ends(RACE). The open reading frame(ORF) contained 2 580 nucleotides encoding 859 amino acids with a molecular weight of 97.433 kDa and an isoelectric point(pI) of 5.7. The deduced amino acid sequence showed high identities with TPS of other plants. Real-time quantitative PCR analysis revealed that the expression level of IbTPS gene was significantly higher in stems of Lushu 3 than in its leaves and roots. Subcellular localization analysis in onion epidermal cells indicated that IbTPS gene was located in the nucleus. Transgenic tobacco(cv. Wisconsin 38) plants over-expressing IbTPS gene exhibited significantly higher salt tolerance compared with the control plant. Trehalose and proline content was found to be significantly more accumulated in transgenic tobacco plants than in the wild-type and several stress tolerance related genes were up-regulated. These results suggest that IbTPS gene may enhance salt tolerance of plants by increasing the amount of treahalose and proline and regulating the expression of stress tolerance related genes.展开更多
为研究桑树的耐盐性机制并筛选耐盐性较强的桑种质资源作为育种材料或直接应用于盐碱地治理,以采自新疆维吾尔自治区和田地区、黑龙江省哈尔滨市、江苏省海安县3个地区的实生桑种子为材料,调查与测定在1~9 g/L Na Cl溶液胁迫下种子的相...为研究桑树的耐盐性机制并筛选耐盐性较强的桑种质资源作为育种材料或直接应用于盐碱地治理,以采自新疆维吾尔自治区和田地区、黑龙江省哈尔滨市、江苏省海安县3个地区的实生桑种子为材料,调查与测定在1~9 g/L Na Cl溶液胁迫下种子的相对萌发率、渗透调节物质含量、抗氧化酶活性变化,并采用实时荧光定量PCR(real-time PCR)方法分析哈尔滨来源桑种子中过氧化物酶(POD)基因POD1及超氧化物歧化酶(SOD)基因sod C的表达特征。3份桑树材料的种子相对萌发率均随盐分胁迫浓度的增加而下降,在相同浓度盐分胁迫下以新疆和田来源桑种子的相对萌发率最高;萌发幼苗中的脯氨酸含量、可溶性蛋白质含量随着盐分胁迫浓度的增加而升高,可溶性糖含量及POD活性均呈先升高后下降的趋势;而萌发幼苗中的SOD活性则随盐分胁迫浓度增加持续下降。桑树种子萌发的幼苗中POD1基因及sod C基因转录水平与相应酶活性的变化存在不完全一致性。研究结果再次证实桑树具有在盐碱地治理中开发应用的潜力,并且来源于新疆和田的桑树种子的耐盐性最强,研究结果亦提示不能仅以POD1基因及sod C 2种基因的转录水平判断桑树的耐盐性。展开更多
基金funded by the Key-Area Research and Development Program of Guangdong Province(2020B020219004)the IndoAustralian Biotechnology Fund(BT/Indo-Aus/09/03/2015)provided by the Department of Biotechnology,Government of India+2 种基金the AISRF48490 Grant by the Department of Industry,Innovation and Science,Australiathe National Natural Science Foundation of China(31870249)the National Distinguished Expert Project(WQ20174400441)。
文摘Salinity is one of the major abiotic stresses which impose constraints to plant growth and production.Rice(Oryza sativa L.)is one of the most important staple food crops and a model monocot plant.Its production is expanding into regions that are affected by soil salinity,requiring cultivars more tolerant to saline conditions.Understanding the molecular mechanisms of such tolerance could lay a foundation for varietal improvement of salt tolerance in rice.In spite of extensive studies exploring the mechanism of salt tolerance,there has been limited progress in breeding for increased salinity tolerance.In this review,we summarize the information about the major molecular mechanisms underlying salinity tolerance in rice and further discuss the limitations in breeding for salinity tolerance.We show that numerous gene families and interaction networks are involved in the regulation of rice responses to salinity,prompting a need for a comprehensive functional analysis.We also show that most studies are based on whole-plant level analyses with only a few reports focused on tissue-and/or cell-specific gene expression.More details of salt-responsive channel and transporter activities at tissue-and cell-specific level still need to be documented before these traits can be incorporated into elite rice germplasm.Thus,future studies should focus on diversity of available genetic resources and,particular,wild rice relatives,to reincorporate salinity tolerance traits lost during domestication.
基金supported by the National Natural Science Foundation of China (31271777)the China Agriculture Research System (CARS-11, Sweetpotato)+1 种基金the National High-Tech R&D Program of China (2012AA101204)the Beijing Key Discipline Program, China
文摘Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in a variety of organisms. In plants, its biosynthesis is catalyzed by two key enzymes: trehalose-6-phosphate synthase(TPS) and trehalose-6-phosphate phosphatase(TPP). In the present study, a TPS gene, named IbTPS, was first isolated from sweetpotato(Ipomoea batatas(L.) Lam.) cv. Lushu 3 by rapid amplification of cDNA ends(RACE). The open reading frame(ORF) contained 2 580 nucleotides encoding 859 amino acids with a molecular weight of 97.433 kDa and an isoelectric point(pI) of 5.7. The deduced amino acid sequence showed high identities with TPS of other plants. Real-time quantitative PCR analysis revealed that the expression level of IbTPS gene was significantly higher in stems of Lushu 3 than in its leaves and roots. Subcellular localization analysis in onion epidermal cells indicated that IbTPS gene was located in the nucleus. Transgenic tobacco(cv. Wisconsin 38) plants over-expressing IbTPS gene exhibited significantly higher salt tolerance compared with the control plant. Trehalose and proline content was found to be significantly more accumulated in transgenic tobacco plants than in the wild-type and several stress tolerance related genes were up-regulated. These results suggest that IbTPS gene may enhance salt tolerance of plants by increasing the amount of treahalose and proline and regulating the expression of stress tolerance related genes.
文摘为研究桑树的耐盐性机制并筛选耐盐性较强的桑种质资源作为育种材料或直接应用于盐碱地治理,以采自新疆维吾尔自治区和田地区、黑龙江省哈尔滨市、江苏省海安县3个地区的实生桑种子为材料,调查与测定在1~9 g/L Na Cl溶液胁迫下种子的相对萌发率、渗透调节物质含量、抗氧化酶活性变化,并采用实时荧光定量PCR(real-time PCR)方法分析哈尔滨来源桑种子中过氧化物酶(POD)基因POD1及超氧化物歧化酶(SOD)基因sod C的表达特征。3份桑树材料的种子相对萌发率均随盐分胁迫浓度的增加而下降,在相同浓度盐分胁迫下以新疆和田来源桑种子的相对萌发率最高;萌发幼苗中的脯氨酸含量、可溶性蛋白质含量随着盐分胁迫浓度的增加而升高,可溶性糖含量及POD活性均呈先升高后下降的趋势;而萌发幼苗中的SOD活性则随盐分胁迫浓度增加持续下降。桑树种子萌发的幼苗中POD1基因及sod C基因转录水平与相应酶活性的变化存在不完全一致性。研究结果再次证实桑树具有在盐碱地治理中开发应用的潜力,并且来源于新疆和田的桑树种子的耐盐性最强,研究结果亦提示不能仅以POD1基因及sod C 2种基因的转录水平判断桑树的耐盐性。