Amongst the important phenomena in neurophysiology, nerve pulse generation and propagation is fundamental. Scientists have studied this phenomena using mathematical models based on experimental observations on the phy...Amongst the important phenomena in neurophysiology, nerve pulse generation and propagation is fundamental. Scientists have studied this phenomena using mathematical models based on experimental observations on the physiological processes in the nerve cell. Widely used models include: the Hodgkin-Huxley (H-H) model, which is based entirely on the electrical activity of the nerve cell;and the Heimburg and Jackson (H-J), model based on the thermodynamic activity of the nerve cell. These classes of models do not, individually, give a complete picture of the processes that lead to nerve pulse generation and propagation. Recently, a hybrid model proposed by Mengnjo, Dikandé and Ngwa (M-D-N), takes into consideration both the electrical and thermodynamic activities of the nerve cell. In their work, the first three bound states of the model are analytically computed and they showed great resemblance to some of the experimentally observed pulse profiles. With these bound states, the M-D-N model reduces to an initial value problem of a linear parabolic partial differential equation with variable coefficients. In this work we consider the resulting initial value problem and, using the theory of function spaces, propose and prove conditions under which such equations will admit unique solutions. We then verify that the resulting initial value problem from the M-D-N model satisfies these conditions and so has a unique solution. Given that the derived initial value problem is complex and there are no known analytic techniques that can be deployed to obtain its solution, we designed a numerical experiment to estimate the solutions. The simulations revealed that the unique solution is a stable pulse that propagates in the x-t plane with constant velocity and maintains the shape of the initial profile.展开更多
Mechanotransduction refers to a physiological process by which mechanical forces, such as pressures exerted by ionized fluids on cell membranes and tissues, can trigger excitations of electrical natures that play impo...Mechanotransduction refers to a physiological process by which mechanical forces, such as pressures exerted by ionized fluids on cell membranes and tissues, can trigger excitations of electrical natures that play important role in the control of various sensory (i.e. stimuli-responsive) organs and homeostasis of living organisms. In this work, the influence of mechanotransduction processes on the generic mechanism of the action potential is investigated analytically, by considering a mathematical model that consists of two coupled nonlinear partial differential equations. One of these two equations is the Korteweg-de Vries equation governing the spatio-temporal evolution of the density difference between intracellular and extracellular fluids across the nerve membrane, and the other is Hodgkin-Huxley cable equation for the transmembrane voltage with a self-regulatory (i.e. diode-type) membrane capacitance. The self-regulatory feature here refers to the assumption that membrane capacitance varies with the difference in density of ion-carrying intracellular and extracellular fluids, thus ensuring an electromechanical feedback mechanism and consequently an effective coupling of the two nonlinear equations. The exact one-soliton solution to the density-difference equation is obtained in terms of a pulse excitation. With the help of this exact pulse solution the Hodgkin-Huxley cable equation is shown to transform, in steady state, to a linear eigenvalue problem some bound states of which can be obtained exactly. Few of such bound-state solutions are found analytically.展开更多
In this paper, an analytical and numerical computation of multi-solitons in Korteweg-de Vries (KdV) equation is presented. The KdV equation, which is classic of all model equations of nonlinear waves in the soliton ph...In this paper, an analytical and numerical computation of multi-solitons in Korteweg-de Vries (KdV) equation is presented. The KdV equation, which is classic of all model equations of nonlinear waves in the soliton phenomena, is described. In the analytical computation, the multi-solitons in KdV equation are computed symbolically using computer symbolic manipulator<span style="white-space:nowrap;">—</span>Wolfram Mathematica via Hirota method because of the lengthy algebraic computation in the method. For the numerical computation, Crank-Nicolson implicit scheme is used to obtain numerical algorithm for the KdV equation. The simulations of solitons in MATLAB as well as results concerning collision or interactions between solitons are presented. Comparing the analytical and numerical solutions, it is observed that the results are identically equal with little ripples in solitons after a collision in the numerical simulations;however there is no significant effect to cause a change in their properties. This supports the existence of solitons solutions and the theoretical assertion that solitons indeed collide with one another and come out without change of properties or identities.展开更多
We study temporal asymptotic property for the solution of the initial value problem for the generalized nonlinear Korteweg-de Vries equation, which is a nonlinear dissipative dispersive wave equation. The decay result...We study temporal asymptotic property for the solution of the initial value problem for the generalized nonlinear Korteweg-de Vries equation, which is a nonlinear dissipative dispersive wave equation. The decay results of the solution follow from the priori L2 integral estimates and the Fourier transform.展开更多
This paper discusses the existence of ion-acoustic solitary waves and their interaction in a dense quantum electron positron-ion plasma by using the quantum hydrodynamic equations. The extended Poincar^-Lighthill-Kuo ...This paper discusses the existence of ion-acoustic solitary waves and their interaction in a dense quantum electron positron-ion plasma by using the quantum hydrodynamic equations. The extended Poincar^-Lighthill-Kuo perturbation method is used to derive the Korteweg-de Vries equations for quantum ion-acoustic solitary waves in this plasma. The effects of the ratio of positrons to ions unperturbation number density p and the quantum diffraction parameter He (Hp) on the newly formed wave during interaction, and the phase shift of the colliding solitary waves are studied. It is found that the interaction between two solitary waves fits linear superposition principle and these plasma parameters have significantly influence on the newly formed wave and phase shift of the colliding solitary waves. The investigations should be useful for understanding the propagation and interaction of ion-acoustic solitary waves in dense astrophysical plasmas (such as white dwarfs) as well as in intense laser-solid matter interaction experiments.展开更多
文摘Amongst the important phenomena in neurophysiology, nerve pulse generation and propagation is fundamental. Scientists have studied this phenomena using mathematical models based on experimental observations on the physiological processes in the nerve cell. Widely used models include: the Hodgkin-Huxley (H-H) model, which is based entirely on the electrical activity of the nerve cell;and the Heimburg and Jackson (H-J), model based on the thermodynamic activity of the nerve cell. These classes of models do not, individually, give a complete picture of the processes that lead to nerve pulse generation and propagation. Recently, a hybrid model proposed by Mengnjo, Dikandé and Ngwa (M-D-N), takes into consideration both the electrical and thermodynamic activities of the nerve cell. In their work, the first three bound states of the model are analytically computed and they showed great resemblance to some of the experimentally observed pulse profiles. With these bound states, the M-D-N model reduces to an initial value problem of a linear parabolic partial differential equation with variable coefficients. In this work we consider the resulting initial value problem and, using the theory of function spaces, propose and prove conditions under which such equations will admit unique solutions. We then verify that the resulting initial value problem from the M-D-N model satisfies these conditions and so has a unique solution. Given that the derived initial value problem is complex and there are no known analytic techniques that can be deployed to obtain its solution, we designed a numerical experiment to estimate the solutions. The simulations revealed that the unique solution is a stable pulse that propagates in the x-t plane with constant velocity and maintains the shape of the initial profile.
文摘Mechanotransduction refers to a physiological process by which mechanical forces, such as pressures exerted by ionized fluids on cell membranes and tissues, can trigger excitations of electrical natures that play important role in the control of various sensory (i.e. stimuli-responsive) organs and homeostasis of living organisms. In this work, the influence of mechanotransduction processes on the generic mechanism of the action potential is investigated analytically, by considering a mathematical model that consists of two coupled nonlinear partial differential equations. One of these two equations is the Korteweg-de Vries equation governing the spatio-temporal evolution of the density difference between intracellular and extracellular fluids across the nerve membrane, and the other is Hodgkin-Huxley cable equation for the transmembrane voltage with a self-regulatory (i.e. diode-type) membrane capacitance. The self-regulatory feature here refers to the assumption that membrane capacitance varies with the difference in density of ion-carrying intracellular and extracellular fluids, thus ensuring an electromechanical feedback mechanism and consequently an effective coupling of the two nonlinear equations. The exact one-soliton solution to the density-difference equation is obtained in terms of a pulse excitation. With the help of this exact pulse solution the Hodgkin-Huxley cable equation is shown to transform, in steady state, to a linear eigenvalue problem some bound states of which can be obtained exactly. Few of such bound-state solutions are found analytically.
文摘In this paper, an analytical and numerical computation of multi-solitons in Korteweg-de Vries (KdV) equation is presented. The KdV equation, which is classic of all model equations of nonlinear waves in the soliton phenomena, is described. In the analytical computation, the multi-solitons in KdV equation are computed symbolically using computer symbolic manipulator<span style="white-space:nowrap;">—</span>Wolfram Mathematica via Hirota method because of the lengthy algebraic computation in the method. For the numerical computation, Crank-Nicolson implicit scheme is used to obtain numerical algorithm for the KdV equation. The simulations of solitons in MATLAB as well as results concerning collision or interactions between solitons are presented. Comparing the analytical and numerical solutions, it is observed that the results are identically equal with little ripples in solitons after a collision in the numerical simulations;however there is no significant effect to cause a change in their properties. This supports the existence of solitons solutions and the theoretical assertion that solitons indeed collide with one another and come out without change of properties or identities.
文摘We study temporal asymptotic property for the solution of the initial value problem for the generalized nonlinear Korteweg-de Vries equation, which is a nonlinear dissipative dispersive wave equation. The decay results of the solution follow from the priori L2 integral estimates and the Fourier transform.
基金supported by the Research Foundation for Young Teachers of Hexi University,China (Grant No. QN-201004)
文摘This paper discusses the existence of ion-acoustic solitary waves and their interaction in a dense quantum electron positron-ion plasma by using the quantum hydrodynamic equations. The extended Poincar^-Lighthill-Kuo perturbation method is used to derive the Korteweg-de Vries equations for quantum ion-acoustic solitary waves in this plasma. The effects of the ratio of positrons to ions unperturbation number density p and the quantum diffraction parameter He (Hp) on the newly formed wave during interaction, and the phase shift of the colliding solitary waves are studied. It is found that the interaction between two solitary waves fits linear superposition principle and these plasma parameters have significantly influence on the newly formed wave and phase shift of the colliding solitary waves. The investigations should be useful for understanding the propagation and interaction of ion-acoustic solitary waves in dense astrophysical plasmas (such as white dwarfs) as well as in intense laser-solid matter interaction experiments.