单向S-粗集(one direction singular rough sets)与单向S-粗集对偶(dual of one direction singular rough sets)是S-粗集(singular rough sets)的两种动态结构;在一定条件下,单向S-粗集与单向S-粗集对偶被还原成Z.Pawlak粗集。单向S-...单向S-粗集(one direction singular rough sets)与单向S-粗集对偶(dual of one direction singular rough sets)是S-粗集(singular rough sets)的两种动态结构;在一定条件下,单向S-粗集与单向S-粗集对偶被还原成Z.Pawlak粗集。单向S-粗集与单向S-粗集对偶分别是S-粗集的基本形式之一。利用单向S-粗集与单向S-粗集对偶,给出动态知识的属性合取范式与属性合取范式萎缩-扩张特征,给出知识推理结构与推理模型。利用单向S-粗集,单向S-粗集对偶,属性合取范式与知识推理交叉、融合、渗透,给出具有属性合取范式萎缩-扩张特征的动态知识生成与生成定理;给出在知识推理条件下的动态知识智能发现与它的属性逻辑关系;给出动态知识的智能筛选、筛选准则、筛选定理与应用。展开更多
文摘单向S-粗集(one direction singular rough sets)与单向S-粗集对偶(dual of one direction singular rough sets)是S-粗集(singular rough sets)的两种动态结构;在一定条件下,单向S-粗集与单向S-粗集对偶被还原成Z.Pawlak粗集。单向S-粗集与单向S-粗集对偶分别是S-粗集的基本形式之一。利用单向S-粗集与单向S-粗集对偶,给出动态知识的属性合取范式与属性合取范式萎缩-扩张特征,给出知识推理结构与推理模型。利用单向S-粗集,单向S-粗集对偶,属性合取范式与知识推理交叉、融合、渗透,给出具有属性合取范式萎缩-扩张特征的动态知识生成与生成定理;给出在知识推理条件下的动态知识智能发现与它的属性逻辑关系;给出动态知识的智能筛选、筛选准则、筛选定理与应用。