提出kinetic Monte Carlo模拟物理气相沉积(physical vapor deposition,简写为PVD)薄膜生长的新算法:用红黑树搜索实现跃迁路径选择及系统跃迁概率更新,通过比较红黑树搜索、线性查找、满二元树搜索的计算效率,综合分析了这3种方法的时...提出kinetic Monte Carlo模拟物理气相沉积(physical vapor deposition,简写为PVD)薄膜生长的新算法:用红黑树搜索实现跃迁路径选择及系统跃迁概率更新,通过比较红黑树搜索、线性查找、满二元树搜索的计算效率,综合分析了这3种方法的时间复杂度和空间复杂度。结果表明红黑树搜索优于其它两种搜索方法,模拟效率最高,更适合用于执行大系统的kinetic Monte Carlo模拟。展开更多
采用动态蒙特卡罗(kinetic Monte Carlo,简称KMC)方法研究物理气相沉积(physical vapor deposition,简称PVD)制备Ni薄膜过程中入射角度对薄膜微观结构的影响。该KMC模型中既包括入射原子与表面之间的碰撞,又包括被吸附原子的扩散。模拟...采用动态蒙特卡罗(kinetic Monte Carlo,简称KMC)方法研究物理气相沉积(physical vapor deposition,简称PVD)制备Ni薄膜过程中入射角度对薄膜微观结构的影响。该KMC模型中既包括入射原子与表面之间的碰撞,又包括被吸附原子的扩散。模拟中用动量机制确定被吸附原子在表面上的初始构型,用分子稳态(molecular statics,简称MS)计算方法计算扩散模型中跃迁原子的激活能。对于模拟结果,采用表面粗糙度和堆积密度作为沉积构型评价指标。研究结果表明:当沉积速率是5μm/min,基板温度是300K和500K时,表面粗糙度和堆积密度曲线在入射角度等于35?时出现拐点;入射角度小于35?时,入射角度增大对表面粗糙度增加和堆积密度减小的影响很少;但是入射角度大于35?时,随入射角度增大表面粗糙度迅速增加、堆积密度迅速减小。另外,当基板温度是300K时,入射角度对薄膜微观结构的影响程度大于基板温度为500K时的影响程度。说明高基板温度促使原子更加充分地扩散,从而能削弱自阴影效应的作用。但是,在保证足够高基板温度和合理沉积速率的情况下,入射角度过大同样不利于致密结构形成。展开更多
The 2D kinetic Monte Carlo (KMC) simulation was used to study the effects of different substrate temperatures on the microstructure of Ni-Cr films in the process of deposition by the electron beam physical vapor dep...The 2D kinetic Monte Carlo (KMC) simulation was used to study the effects of different substrate temperatures on the microstructure of Ni-Cr films in the process of deposition by the electron beam physical vapor deposition (EB-PVD). In the KMC model, substrate was assumed to be a "surface" of tight-packed rows, and the simulation includes two phenomena: adatom-surface collision and adatom diffusion. While the interaction between atoms was described by the embedded atom method, the jumping energy was calculated by the molecular static (MS) calculation. The initial location of the adatom was defined by the Momentum Scheme. The results reveal that there exists a critical substrate temperature which means that the lowest packing density and the highest surface roughness structure will be achieved when the temperature is lower than the smaller critical value, while the roughness of both surfaces and the void contents keep decreasing with the substrate temperature increasing until it reaches the higher critical value. The results also indicate that the critical substrate temperature rises as the deposition rate increases.展开更多
As a Group III–V compound, GaInP is a high-efficiency luminous material. Metal organic chemical vapor deposition (MOCVD) technology is a very efficient way to uniformly grow multi-chip, multilayer and large-area thin...As a Group III–V compound, GaInP is a high-efficiency luminous material. Metal organic chemical vapor deposition (MOCVD) technology is a very efficient way to uniformly grow multi-chip, multilayer and large-area thin film. By combining the computational fluid dynamics (CFD) and the kinetic Monte Carlo (KMC) methods with virtual reality (VR) technology, this paper presents a multiscale simulation of fluid dynamics, thermodynamics, and molecular dynamics to study the growth process of GaInP thin film in a vertical MOCVD reactor. The results of visualization truly and intuitively not only display the distributional properties of the gas’ thermal and flow fields in a MOCVD reactor but also display the process of GaInP thin film growth in a MOCVD reactor. The simulation thus provides us with a fundamental guideline for optimizing GaInP MOCVD growth.展开更多
High-k metal gate stacks are being used to suppress the gate leakage due to tunneling for sub-45 nm technology nodes.The reliability of thin dielectric films becomes a limitation to device manufacturing,especially to ...High-k metal gate stacks are being used to suppress the gate leakage due to tunneling for sub-45 nm technology nodes.The reliability of thin dielectric films becomes a limitation to device manufacturing,especially to the breakdown characteristic.In this work,a breakdown simulator based on a percolation model and the kinetic Monte Carlo method is set up,and the intrinsic relation between time to breakdown and trap generation rate R is studied by TDDB simulation.It is found that all degradation factors,such as trap generation rate time exponent m,Weibull slope β and percolation factor s,each could be expressed as a function of trap density time exponent α.Based on the percolation relation and power law lifetime projection,a temperature related trap generation model is proposed.The validity of this model is confirmed by comparing with experiment results.For other device and material conditions,the percolation relation provides a new way to study the relationship between trap generation and lifetime projection.展开更多
A kinetic Monte Carlo (kMC) simulation is conducted to study the growth of ultrathin film of Co on Cu(001) surface. The many-body, tight-binding potential model is used in the simulation to represent the interatom...A kinetic Monte Carlo (kMC) simulation is conducted to study the growth of ultrathin film of Co on Cu(001) surface. The many-body, tight-binding potential model is used in the simulation to represent the interatomic potential. The film morphology of heteroepitaxial Co film on a Cu(001) substrate at the transient and final state conditions with various incident energies is simulated. The Co covered area and the thickness of the film growth of the first two layers are investigated. The simulation results show that the incident energy influences the film growth and structure. There exists a transition energy where the interracial roughness is minimum. There are some void regions in the film in the final state, because of the influence of the island growth in the first few layers. In addition, there are deviations from ideal layer-by-layer growth at a coverage from 0 - 2 monolayers (ML).展开更多
In this paper, the kinetic Monte Carlo simulations of the self-assembly quantum rings (QRs) based on the substrate engineering, which is related to the eventual shape of the formed quantum ring, are implemented. Acc...In this paper, the kinetic Monte Carlo simulations of the self-assembly quantum rings (QRs) based on the substrate engineering, which is related to the eventual shape of the formed quantum ring, are implemented. According to the simulation results, the availability of the QR with tunable size and the formation of smooth shape on the ideal flat substrate are checked. Through designing the substrate engineering, i.e., changing the depth, the separation and the ratio between the radius and the height of the embedded inclusions, the position and size of QR can be controlled and eventually the growth strategy of optimizing the self-assembly QRs is accomplished.展开更多
根据钙钛矿结构的特点,提出了一种基于双格子系统的动力学蒙特卡罗KMC方法(kinetic monte carlo)。与传统的SOS(solid-on-solid)模型不同,该方法从单个原子事件出发,模拟沉积原子在表面的吸附、扩散和成键的动力学过程。应用该方法模拟...根据钙钛矿结构的特点,提出了一种基于双格子系统的动力学蒙特卡罗KMC方法(kinetic monte carlo)。与传统的SOS(solid-on-solid)模型不同,该方法从单个原子事件出发,模拟沉积原子在表面的吸附、扩散和成键的动力学过程。应用该方法模拟了BaTiO3薄膜在(001)面的同质外延生长过程,分析沉积原子动能对BaTiO3薄膜生长过程中形核率、岛密度、三维形貌、缺陷率以及成键率的影响,为优化工艺参数、制备高性能铁电薄膜提供依据。展开更多
文摘提出kinetic Monte Carlo模拟物理气相沉积(physical vapor deposition,简写为PVD)薄膜生长的新算法:用红黑树搜索实现跃迁路径选择及系统跃迁概率更新,通过比较红黑树搜索、线性查找、满二元树搜索的计算效率,综合分析了这3种方法的时间复杂度和空间复杂度。结果表明红黑树搜索优于其它两种搜索方法,模拟效率最高,更适合用于执行大系统的kinetic Monte Carlo模拟。
基金supported by the Science and Engineering Research Council through Grant(152-70-00017)Use of Computing Resources at the A*STAR Computational Resource Centre and National Supercomputer Centre,Singapore
基金Hi-tech Research and Development Program of China (2002AA763020)National Natural Science Foundation of China (50304007)+1 种基金Fund of Beforehand Research of National Defense (51418040304HT0114)New Century Excellent Talents in University 2004
文摘The 2D kinetic Monte Carlo (KMC) simulation was used to study the effects of different substrate temperatures on the microstructure of Ni-Cr films in the process of deposition by the electron beam physical vapor deposition (EB-PVD). In the KMC model, substrate was assumed to be a "surface" of tight-packed rows, and the simulation includes two phenomena: adatom-surface collision and adatom diffusion. While the interaction between atoms was described by the embedded atom method, the jumping energy was calculated by the molecular static (MS) calculation. The initial location of the adatom was defined by the Momentum Scheme. The results reveal that there exists a critical substrate temperature which means that the lowest packing density and the highest surface roughness structure will be achieved when the temperature is lower than the smaller critical value, while the roughness of both surfaces and the void contents keep decreasing with the substrate temperature increasing until it reaches the higher critical value. The results also indicate that the critical substrate temperature rises as the deposition rate increases.
基金supported by the National Natural Science Foundation of China (Grant No. 60706014)the National Science Fund for Distinguished Young Scholars (Grant No. 60625302)+2 种基金the National Natural Science Foundation of China (General Program) (Grant No. 2009CB320603)the National High-Tech Research and Development Program of China (Grant No. 2009AA04Z159)the Shanghai Leading Academic Discipline Project (Grant No. B504)
文摘As a Group III–V compound, GaInP is a high-efficiency luminous material. Metal organic chemical vapor deposition (MOCVD) technology is a very efficient way to uniformly grow multi-chip, multilayer and large-area thin film. By combining the computational fluid dynamics (CFD) and the kinetic Monte Carlo (KMC) methods with virtual reality (VR) technology, this paper presents a multiscale simulation of fluid dynamics, thermodynamics, and molecular dynamics to study the growth process of GaInP thin film in a vertical MOCVD reactor. The results of visualization truly and intuitively not only display the distributional properties of the gas’ thermal and flow fields in a MOCVD reactor but also display the process of GaInP thin film growth in a MOCVD reactor. The simulation thus provides us with a fundamental guideline for optimizing GaInP MOCVD growth.
基金supported by the National High Technology Research and Development Program of China(Grant No.SS2015AA010601)the National Natural Science Foundation of China(Grant Nos.61176091 and 61306129)the Opening Project of Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Micro Electronics of Chinese Academy of Sciences
文摘High-k metal gate stacks are being used to suppress the gate leakage due to tunneling for sub-45 nm technology nodes.The reliability of thin dielectric films becomes a limitation to device manufacturing,especially to the breakdown characteristic.In this work,a breakdown simulator based on a percolation model and the kinetic Monte Carlo method is set up,and the intrinsic relation between time to breakdown and trap generation rate R is studied by TDDB simulation.It is found that all degradation factors,such as trap generation rate time exponent m,Weibull slope β and percolation factor s,each could be expressed as a function of trap density time exponent α.Based on the percolation relation and power law lifetime projection,a temperature related trap generation model is proposed.The validity of this model is confirmed by comparing with experiment results.For other device and material conditions,the percolation relation provides a new way to study the relationship between trap generation and lifetime projection.
基金supported by National Natural Science Foundation of China (Nos.10574047,20490210)China‘973’Plan (No.2006CB921606)
文摘A kinetic Monte Carlo (kMC) simulation is conducted to study the growth of ultrathin film of Co on Cu(001) surface. The many-body, tight-binding potential model is used in the simulation to represent the interatomic potential. The film morphology of heteroepitaxial Co film on a Cu(001) substrate at the transient and final state conditions with various incident energies is simulated. The Co covered area and the thickness of the film growth of the first two layers are investigated. The simulation results show that the incident energy influences the film growth and structure. There exists a transition energy where the interracial roughness is minimum. There are some void regions in the film in the final state, because of the influence of the island growth in the first few layers. In addition, there are deviations from ideal layer-by-layer growth at a coverage from 0 - 2 monolayers (ML).
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60908028 and 60971068)the Program for New Century Excellent Talentsin University, China (Grant No. NTCE-10-0261)the Chinese Universities Science Fund (Grant No. 2011RC0402)
文摘In this paper, the kinetic Monte Carlo simulations of the self-assembly quantum rings (QRs) based on the substrate engineering, which is related to the eventual shape of the formed quantum ring, are implemented. According to the simulation results, the availability of the QR with tunable size and the formation of smooth shape on the ideal flat substrate are checked. Through designing the substrate engineering, i.e., changing the depth, the separation and the ratio between the radius and the height of the embedded inclusions, the position and size of QR can be controlled and eventually the growth strategy of optimizing the self-assembly QRs is accomplished.
文摘根据钙钛矿结构的特点,提出了一种基于双格子系统的动力学蒙特卡罗KMC方法(kinetic monte carlo)。与传统的SOS(solid-on-solid)模型不同,该方法从单个原子事件出发,模拟沉积原子在表面的吸附、扩散和成键的动力学过程。应用该方法模拟了BaTiO3薄膜在(001)面的同质外延生长过程,分析沉积原子动能对BaTiO3薄膜生长过程中形核率、岛密度、三维形貌、缺陷率以及成键率的影响,为优化工艺参数、制备高性能铁电薄膜提供依据。