Asymmetric cryptographic schemes, represe nted by RSA, have bee n show n to be in secure un der quantum computing conditions. Correspondingly, there is a need to study whether the symmetric cryptosystem can still guar...Asymmetric cryptographic schemes, represe nted by RSA, have bee n show n to be in secure un der quantum computing conditions. Correspondingly, there is a need to study whether the symmetric cryptosystem can still guarantee high security with the advent of quantum computers. In this paper, based on the basic principles of classical slide attacks and Simon's algorithm, we take LED-like lightweight block ciphers as research objects to present a security analysis under both classical and quantum attacks, fully considering the influence on the security of the ciphers of adding the round constants. By analyzing the information leakage of round constants, we can introduce the differential of the round constants to propose a classical slide attack on full-round LED-64 with a probability of 1. The analysis result shows that LED-64 is unable to resist this kind of classical slide attack, but that attack method is not applicable to LED-128. As for quantum attacks, by improving on existing quantum attack methods we dem on strate a qua ntum single-key slide attack on LED-64 and a quantum related-key attack on LED- 128, and indicators of the two attack algorithms are analyzed in detail. The attack results show that adding round consta nts does not completely improve the security of the ciphers, and quantum attacks can provide an exp on ential speed-up over the same attacks in the classical model. It further illustrates that the block cipher that is proved to be safe under classical settings is not necessarily secure under quantum conditions.展开更多
The quantum security of lightweight block ciphers is receiving more and more attention.However,the existing quantum attacks on lightweight block ciphers only focused on the quantum exhaustive search,while the quantum ...The quantum security of lightweight block ciphers is receiving more and more attention.However,the existing quantum attacks on lightweight block ciphers only focused on the quantum exhaustive search,while the quantum attacks combined with classical cryptanalysis methods haven’t been well studied.In this paper,we study quantum key recovery attack on SIMON32/64 using Quantum Amplitude Amplification algorithm in Q1 model.At first,we reanalyze the quantum circuit complexity of quantum exhaustive search on SIMON32/64.We estimate the Clifford gates count more accurately and reduce the T gate count.Also,the T-depth and full depth is reduced due to our minor modifications.Then,using four differentials given by Biryukov in FSE 2014 as our distinguisher,we give our quantum key recovery attack on 19-round SIMON32/64.We treat the two phases of key recovery attack as two QAA instances separately,and the first QAA instance consists of four sub-QAA instances.Then,we design the quantum circuit of these two QAA instances and estimate their corresponding quantum circuit complexity.We conclude that the quantum circuit of our quantum key recovery attack is lower than quantum exhaustive search.Our work firstly studies the quantum dedicated attack on SIMON32/64.And this is the first work to study the complexity of quantum dedicated attacks from the perspective of quantum circuit complexity,which is a more fine-grained analysis of quantum dedicated attacks’complexity.展开更多
基金supported by the Foundation of Science and Technology on Information Assurance Laboratory(No.KJ-17-003)
文摘Asymmetric cryptographic schemes, represe nted by RSA, have bee n show n to be in secure un der quantum computing conditions. Correspondingly, there is a need to study whether the symmetric cryptosystem can still guarantee high security with the advent of quantum computers. In this paper, based on the basic principles of classical slide attacks and Simon's algorithm, we take LED-like lightweight block ciphers as research objects to present a security analysis under both classical and quantum attacks, fully considering the influence on the security of the ciphers of adding the round constants. By analyzing the information leakage of round constants, we can introduce the differential of the round constants to propose a classical slide attack on full-round LED-64 with a probability of 1. The analysis result shows that LED-64 is unable to resist this kind of classical slide attack, but that attack method is not applicable to LED-128. As for quantum attacks, by improving on existing quantum attack methods we dem on strate a qua ntum single-key slide attack on LED-64 and a quantum related-key attack on LED- 128, and indicators of the two attack algorithms are analyzed in detail. The attack results show that adding round consta nts does not completely improve the security of the ciphers, and quantum attacks can provide an exp on ential speed-up over the same attacks in the classical model. It further illustrates that the block cipher that is proved to be safe under classical settings is not necessarily secure under quantum conditions.
基金National Natural Science Foundation of China(Grant No.61672517)National Natural Foundation of China(Key program,Grant No.61732021)+1 种基金National Cyrptography Development Fund(Grant No.MMJJ20170108)Beijing Municipal Science&Technology Commission(Grant No.Z191100007119006).
文摘The quantum security of lightweight block ciphers is receiving more and more attention.However,the existing quantum attacks on lightweight block ciphers only focused on the quantum exhaustive search,while the quantum attacks combined with classical cryptanalysis methods haven’t been well studied.In this paper,we study quantum key recovery attack on SIMON32/64 using Quantum Amplitude Amplification algorithm in Q1 model.At first,we reanalyze the quantum circuit complexity of quantum exhaustive search on SIMON32/64.We estimate the Clifford gates count more accurately and reduce the T gate count.Also,the T-depth and full depth is reduced due to our minor modifications.Then,using four differentials given by Biryukov in FSE 2014 as our distinguisher,we give our quantum key recovery attack on 19-round SIMON32/64.We treat the two phases of key recovery attack as two QAA instances separately,and the first QAA instance consists of four sub-QAA instances.Then,we design the quantum circuit of these two QAA instances and estimate their corresponding quantum circuit complexity.We conclude that the quantum circuit of our quantum key recovery attack is lower than quantum exhaustive search.Our work firstly studies the quantum dedicated attack on SIMON32/64.And this is the first work to study the complexity of quantum dedicated attacks from the perspective of quantum circuit complexity,which is a more fine-grained analysis of quantum dedicated attacks’complexity.