期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于核直接判别分析和支持向量回归的WLAN室内定位算法 被引量:41
1
作者 徐玉滨 邓志安 马琳 《电子与信息学报》 EI CSCD 北大核心 2011年第4期896-901,共6页
该文针对RSS信号的时变性降低WLAN室内定位精度的问题,提出了一种新的基于核直接判别分析和支持向量回归的定位算法。该算法利用核直接判别分析对原始RSS信号进行定位信息重组,去除冗余定位特征和噪声,提取最具判别力的定位特征,然后采... 该文针对RSS信号的时变性降低WLAN室内定位精度的问题,提出了一种新的基于核直接判别分析和支持向量回归的定位算法。该算法利用核直接判别分析对原始RSS信号进行定位信息重组,去除冗余定位特征和噪声,提取最具判别力的定位特征,然后采用支持向量回归算法建立定位特征与物理位置的映射关系。实验结果表明,提出算法的定位精度明显高于传统定位算法,且大大降低了离线阶段数据采集的工作量。 展开更多
关键词 无线局域网 室内定位 核直接判别分析 支持向量回归
下载PDF
分数次幂多项式核函数在核直接判别式分析中的应用 被引量:12
2
作者 李粉兰 唐文彦 +1 位作者 段海峰 郝建国 《光学精密工程》 EI CAS CSCD 北大核心 2007年第9期1410-1414,共5页
提出了在核直接判别式分析(KDDA)中采用分数次幂多项式核函数的方法,并在ORL人脸库中对多头部姿态、尺度等变化进行了实验。实验结果表明,采用分数次幂多项式核函数比采用整数次幂多项式核函数时的KDDA误识别率明显要低(取36个特征数时... 提出了在核直接判别式分析(KDDA)中采用分数次幂多项式核函数的方法,并在ORL人脸库中对多头部姿态、尺度等变化进行了实验。实验结果表明,采用分数次幂多项式核函数比采用整数次幂多项式核函数时的KDDA误识别率明显要低(取36个特征数时,误识别率低2%),且随着使用的特征数不断减少,这种优势愈加明显。实验充分证实了在KDDA中采用分数次幂多项式核函数的有效性及其对人脸的光照、头部姿态、面部表情等变化的鲁棒性。 展开更多
关键词 核直接判别式分析 面部表情 分数次幂多项式核函数 ORL人脸数据库
下载PDF
基于KDDA和SFLA-LSSVR算法的WLAN室内定位算法 被引量:9
3
作者 张勇 李飞腾 王昱洁 《计算机研究与发展》 EI CSCD 北大核心 2017年第5期979-985,共7页
针对接收信号强度(received signal strength,RSS)的时变性降低WLAN室内定位精度的问题,提出了一种基于核直接判别分析(kernel direct discriminant analysis,KDDA)和混洗蛙跳最小二乘支持向量回归机(SFLA-LSSVR)的定位算法,该算法通过... 针对接收信号强度(received signal strength,RSS)的时变性降低WLAN室内定位精度的问题,提出了一种基于核直接判别分析(kernel direct discriminant analysis,KDDA)和混洗蛙跳最小二乘支持向量回归机(SFLA-LSSVR)的定位算法,该算法通过核函数策略将采集的各接入点(access point,AP)的RSS信号映射到非线性领域,有效提取了非线性定位特征,重组定位信息,去除冗余定位特征和噪声;然后采用LSSVR算法构建指纹点定位特征数据与物理位置的映射关系模型,采用SFLA算法优化该关系模型的参数,并用该关系模型对测试点的位置进行回归预测.实验结果表明:提出算法在相同的采样次数下的定位精度明显优于WKNN,ANN,LSSVR算法,并且在相同的定位精度下,采样次数较大减少,是一种性能良好的WLAN室内定位算法. 展开更多
关键词 接收信号强度 无线局域网 室内定位 核直接判别分析 混洗蛙跳算法 最小二乘支持向量回归机
下载PDF
基于局部保持投影和核直接判别分析的掌纹识别 被引量:6
4
作者 郭金玉 李元 +1 位作者 孔晓光 曾静 《光电子.激光》 EI CAS CSCD 北大核心 2011年第1期127-130,共4页
为了提高识别性能,提出运用局部保持投影(LPP)和核直接判别分析(KDDA)相结合的方法进行掌纹识别。在小样本图像识别中,为了解决特征方程矩阵的奇异性,首先运用图像下抽样降低掌纹空间的维数,然后应用LPP提取掌纹局部结构特征作为KDDA的... 为了提高识别性能,提出运用局部保持投影(LPP)和核直接判别分析(KDDA)相结合的方法进行掌纹识别。在小样本图像识别中,为了解决特征方程矩阵的奇异性,首先运用图像下抽样降低掌纹空间的维数,然后应用LPP提取掌纹局部结构特征作为KDDA的输入提取分类特征,计算特征向量间的余弦距离进行掌纹匹配。运用PolyU掌纹图像库,对本文算法进行测试。实验结果表明,与主元分析(PCA)、独立元分析(ICA)、PCA+LPP、核局部保持投影(KLPP)、核判别分析(KDA)和抽样(sample)+LPP相比,本文算法的识别率(RR)最高为99.71%,特征提取和匹配总时间为0.131 s,满足实时系统的要求。 展开更多
关键词 图像处理 掌纹识别 下抽样 局部保持投影(LPP) 核直接判别分析(kdda)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部