The Kendekeke polymetallic deposit,located in the middle part of the magmatic arc belt of Qimantag on the southwestern margin of the Qaidam Basin,is a polygenetic compound deposit in the Qimantag metallogenic belt of ...The Kendekeke polymetallic deposit,located in the middle part of the magmatic arc belt of Qimantag on the southwestern margin of the Qaidam Basin,is a polygenetic compound deposit in the Qimantag metallogenic belt of Qinghai Province.Multi-periodic ore-forming processes occurred in this deposit,including early-stage iron mineralization and lead-zinc-gold-polymetallic mineralization which was controlled by later hydrothermal process.The characteristics of the ore-forming fluids and mineralization were discussed by using the fluid inclusion petrography,Laser Raman Spectrum and micro-thermometry methods.Three stages,namely,S1-stage (copper-iron-sulfide stage),S2-stage (lead-zinc-sulfide stage) and C-stage (carbonate stage) were included in the hydrothermal process as indicated by the results of this study.The fluid inclusions are in three types:aqueous inclusion (type I),CO2-aqueous inclusion (type Ⅱ) and pure CO2 inclusion (type Ⅲ).Type Ⅰ inclusions were observed in the S1-stage,having homogenization temperature at 240-320℃,and salinities ranging from 19.8% to 25.0% (wt% NaCl equiv.).All three types of inclusions,existing as immiscible inclusion assemblages,were presented in the S2-stage,with the lowest homogenization temperature ranging from 175 ℃ to 295℃,which represents the metallogenic temperature of the S2-stage.The salinities of these inclusions are in the range of 1.5% to 16%.The fluid inclusions in the C-stage belong to types Ⅰ,Ⅱ and Ⅲ,having homogenization temperatures at 120-210℃,and salinities ranging from 0.9% to 14.5%.These observations indicate that the ore-forming fluids evolved from high-temperature to low-temperature,from high-salinity to low-salinity,from homogenization to immiscible separation.Results of Laser Raman Spectroscopy show that high density of CO2 and CH4 were found as gas compositions in the inclusions.CO2,worked as the pH buffer of ore-forming fluids,together with reduction of organic gases (i.e.CH4,etc),affected the展开更多
基金supported by the China Geological Survey Investigation Programs (No. 2008-21-03 and No. 20110301-64)
文摘The Kendekeke polymetallic deposit,located in the middle part of the magmatic arc belt of Qimantag on the southwestern margin of the Qaidam Basin,is a polygenetic compound deposit in the Qimantag metallogenic belt of Qinghai Province.Multi-periodic ore-forming processes occurred in this deposit,including early-stage iron mineralization and lead-zinc-gold-polymetallic mineralization which was controlled by later hydrothermal process.The characteristics of the ore-forming fluids and mineralization were discussed by using the fluid inclusion petrography,Laser Raman Spectrum and micro-thermometry methods.Three stages,namely,S1-stage (copper-iron-sulfide stage),S2-stage (lead-zinc-sulfide stage) and C-stage (carbonate stage) were included in the hydrothermal process as indicated by the results of this study.The fluid inclusions are in three types:aqueous inclusion (type I),CO2-aqueous inclusion (type Ⅱ) and pure CO2 inclusion (type Ⅲ).Type Ⅰ inclusions were observed in the S1-stage,having homogenization temperature at 240-320℃,and salinities ranging from 19.8% to 25.0% (wt% NaCl equiv.).All three types of inclusions,existing as immiscible inclusion assemblages,were presented in the S2-stage,with the lowest homogenization temperature ranging from 175 ℃ to 295℃,which represents the metallogenic temperature of the S2-stage.The salinities of these inclusions are in the range of 1.5% to 16%.The fluid inclusions in the C-stage belong to types Ⅰ,Ⅱ and Ⅲ,having homogenization temperatures at 120-210℃,and salinities ranging from 0.9% to 14.5%.These observations indicate that the ore-forming fluids evolved from high-temperature to low-temperature,from high-salinity to low-salinity,from homogenization to immiscible separation.Results of Laser Raman Spectroscopy show that high density of CO2 and CH4 were found as gas compositions in the inclusions.CO2,worked as the pH buffer of ore-forming fluids,together with reduction of organic gases (i.e.CH4,etc),affected the