期刊文献+
共找到1,909篇文章
< 1 2 96 >
每页显示 20 50 100
三维散乱点云模型的特征点检测 被引量:38
1
作者 王丽辉 袁保宗 《信号处理》 CSCD 北大核心 2011年第6期932-938,共7页
随着三维点云模型越来越受到人们的关注,如何对数据量大,无序的三维点云模型进行特征点检测也是近几年的研究热点。本文提出了基于曲率和密度的特征点检测算法,为每个数据点定义一个特征参数,这个参数由三部分组成:点到邻居点的平均距离... 随着三维点云模型越来越受到人们的关注,如何对数据量大,无序的三维点云模型进行特征点检测也是近几年的研究热点。本文提出了基于曲率和密度的特征点检测算法,为每个数据点定义一个特征参数,这个参数由三部分组成:点到邻居点的平均距离;点的法向与邻居点法向夹角的和;数据点曲率。然后通过八叉树方法计算模型的数据点密度,将这个密度与模型到中心点的最大距离相除得到特征阈值,特征参数大于阈值的点就是特征点。本文计算时,检测模型的特征点只需用到三维点云模型的几何特征,如数据点法向,曲率和邻居点。实例表明本算法可准确地检测出散乱数据点云的特征点。 展开更多
关键词 三维点云模型 特征参数 特征点检测 k近邻
下载PDF
基于相互邻近度的密度峰值聚类算法 被引量:21
2
作者 赵嘉 姚占峰 +1 位作者 吕莉 樊棠怀 《控制与决策》 EI CSCD 北大核心 2021年第3期543-552,共10页
密度峰值聚类算法对密集程度不一数据的聚类效果不佳,样本分配过程易产生连带错误.为此,提出一种基于相互邻近度的密度峰值聚类算法.所提算法引入k近邻思想计算局部密度,以此保证密度的相对性.定义综合数据全局和局部特征的样本相互邻... 密度峰值聚类算法对密集程度不一数据的聚类效果不佳,样本分配过程易产生连带错误.为此,提出一种基于相互邻近度的密度峰值聚类算法.所提算法引入k近邻思想计算局部密度,以此保证密度的相对性.定义综合数据全局和局部特征的样本相互邻近度的度量准则,据此准则,提出一种新的样本分配策略.新的分配策略采用k近邻思想寻找密度峰值,将密度峰值的k个近邻点分配给其对应类簇,对所有已分配数据点寻找相互邻近度最高的未分配数据点,将未分配数据点分配给已分配数据点所在类簇.在合成和UCI数据集上,将所提算法与DPC、DBSCAN、OPTICS、AP、K-Means及DPC的改进算法进行比较,实验结果表明,所提出的算法性能最优. 展开更多
关键词 密度峰值聚类 相互邻近度 分配策略 k近邻
原文传递
基于主元分析得分重构差分的故障检测策略 被引量:20
3
作者 张成 郭青秀 +1 位作者 李元 高宪文 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第5期774-782,共9页
基于主元分析(PCA)的统计过程控制方法通常假设数据的生成过程是独立同分布的.当数据存在多模态结构或过程变量非线性相关时, PCA方法的故障检测性能将受到影响.针对上述问题,本文提出一种基于PCA得分重构差分的故障检测策略.首先,应用... 基于主元分析(PCA)的统计过程控制方法通常假设数据的生成过程是独立同分布的.当数据存在多模态结构或过程变量非线性相关时, PCA方法的故障检测性能将受到影响.针对上述问题,本文提出一种基于PCA得分重构差分的故障检测策略.首先,应用PCA将输入空间分解为主元子空间和残差子空间;接下来,应用k近邻(kNN)规则重构当前样本得分向量并计算样本的得分重构差分向量;最后,计算得分重构差分向量的统计值并进行故障检测.本文方法不仅可以降低数据多模态和变量非线性相关等特征对过程故障检测的影响,同时可以降低统计量的自相关性、提高过程故障检测率.将本文方法在两个模拟例子和田纳西–伊斯曼(TE)过程中进行测试,并与PCA、核主元分析(KPCA)、动态主元分析(DPCA)和k 最近邻故障检测(FD–kNN)方法进行对比分析,测试结果证明了本文方法的有效性. 展开更多
关键词 主元分析 得分重构差分 k近邻 TE过程 故障检测
下载PDF
广义回归神经网络的改进及在交通预测中的应用 被引量:16
4
作者 伊良忠 章超 裴峥 《山东大学学报(工学版)》 CAS 北大核心 2013年第1期9-14,共6页
本研究基于k近邻的方法通过网络性能评价指标来对平滑因子进行选择确定。通过k近邻法找出使得网络性能评价最好的平滑因子,不再仅依赖于一个均方误差数值,而根据均方误差组的排序来选择最优的平滑因子。该算法能够在保持较好的预测效果... 本研究基于k近邻的方法通过网络性能评价指标来对平滑因子进行选择确定。通过k近邻法找出使得网络性能评价最好的平滑因子,不再仅依赖于一个均方误差数值,而根据均方误差组的排序来选择最优的平滑因子。该算法能够在保持较好的预测效果的前提下解决因数据波动性大而最终得不到最优平滑因子的难题。通过预测交通数据的实验验证了算法的有效性。结果表明通过k近邻方法得到的最优平滑因子会使网络预测误差降至最小。 展开更多
关键词 广义回归神经网络 k近邻法 平滑因子
原文传递
局部子空间聚类 被引量:14
5
作者 刘展杰 陈晓云 《自动化学报》 EI CSCD 北大核心 2016年第8期1238-1247,共10页
现有子空间聚类方法通常以数据全局线性为前提,将每个样本点表示为其他样本点的线性组合,因而导致常见子空间聚类方法不能很好地应用于非线性数据.为克服全局线性表示的局限,借鉴流形学习思想,用k近邻局部线性表示代替全局线性表示,与... 现有子空间聚类方法通常以数据全局线性为前提,将每个样本点表示为其他样本点的线性组合,因而导致常见子空间聚类方法不能很好地应用于非线性数据.为克服全局线性表示的局限,借鉴流形学习思想,用k近邻局部线性表示代替全局线性表示,与稀疏子空间聚类和最小二乘子空间聚类方法相结合,提出局部稀疏子空间聚类和局部最小二乘子空间聚类方法,统称局部子空间聚类方法.在双月形数据、6个图像数据集和4个基因表达数据集上进行实验,实验结果表明该方法是有效的. 展开更多
关键词 局部线性 k近邻 子空间聚类 图像数据 基因表达数据
下载PDF
基于反向K近邻的孤立点检测算法 被引量:8
6
作者 岳峰 邱保志 《计算机工程与应用》 CSCD 北大核心 2007年第7期182-184,共3页
提出了基于反向K近邻(RKNN)的孤立点检测算法ODRKNN。ODRKNN算法用每个数据点的反向K近邻个数来衡量该数据点的偏离程度,在综合数据集和真实数据集上的实验结果表明,该算法能有效地检测出孤立点,且算法的效率高于算法LOF和LSC的效率。
关键词 孤立点 k近邻 反向k近邻
下载PDF
散乱数据点的k近邻快速搜索算法 被引量:6
7
作者 马长胜 姜晓峰 强鹤群 《微电子学与计算机》 CSCD 北大核心 2007年第12期206-209,共4页
提出了一种改进的散乱数据点k近邻搜索算法,该问题是逆向工程曲面重构技术中的关键环节。采用传统分块算法对点云空间进行首次分割,在此基础上估算点云平均点距,并利用平均点距估算结果对点云数据空间重新进行划分。分块结果使得k近邻... 提出了一种改进的散乱数据点k近邻搜索算法,该问题是逆向工程曲面重构技术中的关键环节。采用传统分块算法对点云空间进行首次分割,在此基础上估算点云平均点距,并利用平均点距估算结果对点云数据空间重新进行划分。分块结果使得k近邻搜索算法的搜索范围大大缩小,搜索速度明显提高。 展开更多
关键词 点云 k近邻 空间划分
下载PDF
一种基于立方体小栅格的K邻域快速搜索算法 被引量:12
8
作者 赵俭辉 龙成江 +1 位作者 丁乙华 袁志勇 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2009年第5期615-618,共4页
提出了一种新的基于立方体小栅格的K邻域搜索算法。首先,采用二次划分的方法将点云划分到相应的立方体小栅格中;然后,为采样点所在的立方体小栅格确定最终子空间、内子空间和外子空间,结合采样点的球空间,就能很快确定该采样点的K邻域... 提出了一种新的基于立方体小栅格的K邻域搜索算法。首先,采用二次划分的方法将点云划分到相应的立方体小栅格中;然后,为采样点所在的立方体小栅格确定最终子空间、内子空间和外子空间,结合采样点的球空间,就能很快确定该采样点的K邻域的搜索范围。与已有方法相比,该算法具有更高的搜索效率。 展开更多
关键词 k邻域 三维点云 立方体小栅格 搜索算法
原文传递
基于独立元的k近邻故障检测策略 被引量:12
9
作者 张成 高宪文 +2 位作者 徐涛 李元 逄玉俊 《控制理论与应用》 EI CAS CSCD 北大核心 2018年第6期805-812,共8页
k近邻故障检测(fault detection based on k nearest neighbors,FD–k NN)方法能够提高具有非线性和多模态特征过程的故障检测率.由于系统故障通常由潜隐变量异常变化引起,而该类型故障并不能被观测数据直观表现,因此直接在观测变量上执... k近邻故障检测(fault detection based on k nearest neighbors,FD–k NN)方法能够提高具有非线性和多模态特征过程的故障检测率.由于系统故障通常由潜隐变量异常变化引起,而该类型故障并不能被观测数据直观表现,因此直接在观测变量上执行FD–k NN方法,其故障检测率降低.本文旨在提高FD–k NN方法针对潜隐变量故障的检测能力,提出基于独立元的k近邻故障检测方法.首先,通过对观测数据应用独立元分析(independent component analysis,ICA)方法,获得独立元矩阵;接下来在独立元矩阵中应用FD–k NN方法进行故障检测.这等同于直接监控过程潜隐变量的变化,可以提高过程故障检测率.通过非线性实例仿真实验,证明本文方法检测潜隐变量故障是有效的;同时,在半导体蚀刻工艺过程的仿真实验中,与主元分析(principal component analysis,PCA)方法、核主元分析(kernel principal component analysis,KPCA)方法、基于主元分析的k近邻故障检测(principal component–based k nearest neighbor rule for fault detection,PC–k NN)方法和FD–k NN方法进行对比,实验结果进一步验证了本文方法的有效性. 展开更多
关键词 k近邻 独立元分析 主元分析 故障检测 间歇过程
下载PDF
海量空间数据点k近邻的快速搜索算法 被引量:7
10
作者 吴丽娟 郑冕 张彩明 《小型微型计算机系统》 CSCD 北大核心 2007年第1期70-74,共5页
提出一种新的海量空间数据点k近邻的快速搜索算法.本算法综合考虑了空间数据的范围、数据点的总数、近邻点数目k以及数据点的密度,给出了一种新的估算子立方体边长的方法;采用空间分块策略,把数据空间划分成多个子立方体,子立方体的大... 提出一种新的海量空间数据点k近邻的快速搜索算法.本算法综合考虑了空间数据的范围、数据点的总数、近邻点数目k以及数据点的密度,给出了一种新的估算子立方体边长的方法;采用空间分块策略,把数据空间划分成多个子立方体,子立方体的大小决定k近邻的搜索速度;最后记录每个子立方体所包含的数据点及每个点所属的子立方体编号,搜索测点的k近邻.大量数据的实验结果表明本算法可以大大提高在海量空间数据点中搜索测点k近邻的速度. 展开更多
关键词 k近邻 海量数据 子立方体 曲面重建
下载PDF
k近邻约束的稀疏子空间聚类 被引量:11
11
作者 刘玉馨 何光辉 《计算机工程与应用》 CSCD 北大核心 2019年第3期39-45,共7页
稀疏子空间聚类是近年提出的高维数据聚类框架,针对实际数据并不完全满足线性子空间模型的假设,提出k近邻约束的稀疏子空间聚类算法。该算法结合数据的子空间结构,k近邻及距离信息,在稀疏子空间模型上,添加k近邻约束项。添加的约束项符... 稀疏子空间聚类是近年提出的高维数据聚类框架,针对实际数据并不完全满足线性子空间模型的假设,提出k近邻约束的稀疏子空间聚类算法。该算法结合数据的子空间结构,k近邻及距离信息,在稀疏子空间模型上,添加k近邻约束项。添加的约束项符合距离越小,相似系数越大的直观认识且不改变系数矩阵的稀疏性。在人脸数据集Extended YaleB、ORL、AR,物体图像数据集COIL20及手写数据集USPS上的聚类实验表明提出的算法具有良好的性能。 展开更多
关键词 子空间 聚类 稀疏表示 k近邻 人脸聚类
下载PDF
空间散乱点k近邻搜索的新策略 被引量:9
12
作者 张涛 张定华 +2 位作者 王凯 胡栋材 张伟伟 《机械科学与技术》 CSCD 北大核心 2008年第10期1233-1235,1241,共4页
提出了一种快速搜索k近邻点的算法。本算法采用空间包围盒分块策略,将数据点空间沿三个坐标轴方向分割成若干小立方体子空间。在局部搜索过程中,通过方向控制减小扩展的搜索范围,优先在k近邻最有可能出现的立方体子空间内搜索。大量实... 提出了一种快速搜索k近邻点的算法。本算法采用空间包围盒分块策略,将数据点空间沿三个坐标轴方向分割成若干小立方体子空间。在局部搜索过程中,通过方向控制减小扩展的搜索范围,优先在k近邻最有可能出现的立方体子空间内搜索。大量实际数据的实验结果表明:本文算法可以大大提高海量散乱数据点的k近邻搜索的速度。 展开更多
关键词 散乱点 k近邻 包围盒 点云
下载PDF
基于GA/SVM的微阵列数据特征的选择与分类 被引量:3
13
作者 余伟峰 王广伦 钱夕元 《计算机工程》 CAS CSCD 北大核心 2007年第19期204-206,共3页
微阵列数据样本小、维度高的特点给数据分析造成了困难,而主基因的挑选又十分的重要。该文采用遗传算法挑选主基因,其中,用k最邻居距离作为模式识别方法,用支持向量机构造了诊断系统,用不同核函数进行预测分类性能测试。在经典的白血病... 微阵列数据样本小、维度高的特点给数据分析造成了困难,而主基因的挑选又十分的重要。该文采用遗传算法挑选主基因,其中,用k最邻居距离作为模式识别方法,用支持向量机构造了诊断系统,用不同核函数进行预测分类性能测试。在经典的白血病数据集上,对34个样本的测试集的分类准确率为100%。 展开更多
关键词 微阵列数据 基因表达 遗传算法 k最邻居距离 支持向量机
下载PDF
基于共享近邻相似度的密度峰聚类算法 被引量:8
14
作者 鲍舒婷 孙丽萍 +1 位作者 郑孝遥 郭良敏 《计算机应用》 CSCD 北大核心 2018年第6期1601-1607,共7页
密度峰聚类是一种基于密度的高效聚类方法,但存在对全局参数dc敏感和需要人工干预决策图进行聚类中心选择的缺陷。针对上述问题,提出了一种基于共享近邻相似度的密度峰聚类算法。首先,该算法结合欧氏距离和共享近邻相似度进行样本局部... 密度峰聚类是一种基于密度的高效聚类方法,但存在对全局参数dc敏感和需要人工干预决策图进行聚类中心选择的缺陷。针对上述问题,提出了一种基于共享近邻相似度的密度峰聚类算法。首先,该算法结合欧氏距离和共享近邻相似度进行样本局部密度的定义,避免了原始密度峰聚类算法中参数dc的设置;其次,优化聚类中心的选择过程,能够自适应地进行聚类中心的选择;最后,将样本分配至距其最近并拥有较高密度的样本所在的簇中。实验结果表明,在UCI数据集和模拟数据集上,该算法与原始的密度峰聚类算法相比,准确率、标准化互信息(NMI)和F-Measure指标分别平均提高约22.3%、35.7%和16.6%。该算法能有效地提高聚类的准确性和聚类结果的质量。 展开更多
关键词 密度峰聚类 k近邻 共享近邻 局部密度 相似性度量
下载PDF
融合动态K近邻Slope_One的协同过滤推荐算法
15
作者 李灵慧 王逊 +1 位作者 王云沼 黄树成 《计算机与数字工程》 2024年第1期156-161,共6页
传统协同过滤推荐算法存在数据稀疏的问题,这会导致算法精确度不足。Slope_One算法简单高效,可以预测用户对某个物品的评分。因此,论文提出融合动态K近邻Slope_One的协同过滤推荐算法,提高推荐算法的精确度。首先利用改进余弦相似度公... 传统协同过滤推荐算法存在数据稀疏的问题,这会导致算法精确度不足。Slope_One算法简单高效,可以预测用户对某个物品的评分。因此,论文提出融合动态K近邻Slope_One的协同过滤推荐算法,提高推荐算法的精确度。首先利用改进余弦相似度公式计算用户相似度,筛选出K个近邻用户进行平均评分偏差计算,利用Slope_One算法预测相应的用户评分并对评分矩阵进行有效填充,然后在新的评分矩阵上,利用基于物品的协同过滤算法进行推荐。 展开更多
关键词 协同过滤 k近邻 Slope_One算法 数据稀疏
下载PDF
面向投票类AI分类器的零冗余存储器容错设计
16
作者 柳姗姗 金辉 +6 位作者 刘思佳 王天琦 周彬 马瑶 王碧 常亮 周军 《集成电路与嵌入式系统》 2024年第6期1-8,共8页
投票类分类器广泛应用于多种人工智能(Artificial Intelligence,AI)场景,在其电路系统中,用于存储已知样本信息的存储器易受到辐射、物理特性变化等多种效应影响,引发软错误,继而可能导致分类失败。因此,在高安全性领域应用的AI分类器,... 投票类分类器广泛应用于多种人工智能(Artificial Intelligence,AI)场景,在其电路系统中,用于存储已知样本信息的存储器易受到辐射、物理特性变化等多种效应影响,引发软错误,继而可能导致分类失败。因此,在高安全性领域应用的AI分类器,其存储电路需要进行容错设计。现有存储器容错技术通常采用错误纠正码,但面向AI系统,其引入的冗余会进一步加剧本就面临挑战的存储负担。因此本文提出一种零冗余存储器容错技术,采用纠正错误对分类结果的负面影响而非纠正错误本身的设计思想,利用错误造成的数据翻转现象恢复出正确的分类结果。通过对k邻近算法进行实验验证,本文提出的技术在不引入任何冗余的情况下可达到近乎完全的容错能力,且相比于现有技术,节省了大量硬件开销。 展开更多
关键词 存储器 软错误 人工智能 分类器 错误纠正码 k邻近算法
下载PDF
基于K最近邻的支持向量机快速训练算法 被引量:5
17
作者 孙发圣 肖怀铁 《电光与控制》 北大核心 2008年第6期44-47,共4页
传统支持向量机训练大规模样本时间和空间开销大,使其应用受到了很大限制。为了提高支持向量机的训练速度,根据支持向量机的基本原理,应用K最近邻思想来筛选训练样本集,提出了基于K最近邻的支持向量机快速训练算法(KNN-SVM)。算法首先... 传统支持向量机训练大规模样本时间和空间开销大,使其应用受到了很大限制。为了提高支持向量机的训练速度,根据支持向量机的基本原理,应用K最近邻思想来筛选训练样本集,提出了基于K最近邻的支持向量机快速训练算法(KNN-SVM)。算法首先选取一部分最有可能成为支持向量的样本——边界向量,然后用边界向量集代替训练样本集进行支持向量机训练,大幅度减少了训练样本的数量,使支持向量机的训练速度显著提高。同时,由于边界向量包含了支持向量,因此,支持向量机的分类能力没有受到影响。仿真实验结果表明,与传统支持向量机相比,在分类精度相同的情况下,算法能够有效地提高支持向量机的训练速度,而且还可以提高支持向量机的分类速度和推广能力。 展开更多
关键词 支持向量机 训练速度 分类能力 边界向量 k最近邻
下载PDF
K-近邻算法的改进及实现 被引量:6
18
作者 张宇 《电脑开发与应用》 2008年第2期18-20,共3页
利用k-近邻算法进行分类时,如果属性集包含不相关属性或弱相关属性,那么分类精度将会降低。研究了k-近邻分类器,分析了k-近邻分类器的缺点,提出了一种利用随机属性子集组合k近邻分类器的算法。通过随机的属性子集组合多个k近邻分类器,... 利用k-近邻算法进行分类时,如果属性集包含不相关属性或弱相关属性,那么分类精度将会降低。研究了k-近邻分类器,分析了k-近邻分类器的缺点,提出了一种利用随机属性子集组合k近邻分类器的算法。通过随机的属性子集组合多个k近邻分类器,利用简单的投票,对多个k-近邻分类器的输出进行组合,这样可有效地改进k-近邻分类器的精度。 展开更多
关键词 k-近邻分类器 属性子集 投票
下载PDF
求k邻域的体素栅格算法研究 被引量:4
19
作者 董洪伟 《计算机工程与应用》 CSCD 北大核心 2007年第21期52-56,共5页
给定一个度量空间中的一组数据点集,k邻域问题在于对于某个数据点求出按照该空间的距离度量离数据点最近的k个数据样本。目前主要有2种方法,一种是基于立方体分割形成的三维立方体体素索引数组的体素栅格(CG(CellGrid)方法,另一种方法... 给定一个度量空间中的一组数据点集,k邻域问题在于对于某个数据点求出按照该空间的距离度量离数据点最近的k个数据样本。目前主要有2种方法,一种是基于立方体分割形成的三维立方体体素索引数组的体素栅格(CG(CellGrid)方法,另一种方法是基于树索引结构的方法如kd-Tree等。论文主要研究经典CG方法及解决其内存消耗过多问题的两个改进方法:排序体素栅格(SCG)方法和投影体素栅格(PCG)方法。CG、SCG、PCG算法采用了改进的搜索方法,避免了传统CG算法[2-4]可能得到错误k邻域的问题。对三种算法的时空性能进行了分析比较,给出了相应的实验比较数据。 展开更多
关键词 k最近邻域 BSP树 kD树
下载PDF
点云数据的k近邻快速建立改进算法 被引量:5
20
作者 安雁艳 杨秋翔 +2 位作者 冯欣悦 范建华 杨剑 《计算机工程与设计》 CSCD 北大核心 2014年第12期4228-4232,共5页
针对点云数据最近点搜索时栅格化所得空间子块大,并且在未完全找到前搜索范围需扩展一圈的问题,提出一种基于二次栅格化和扩展方向可控的快速搜索算法。采用传统分块算法一次栅格化数据空间;综合考虑非空栅格、最近点数目及一次划分边长... 针对点云数据最近点搜索时栅格化所得空间子块大,并且在未完全找到前搜索范围需扩展一圈的问题,提出一种基于二次栅格化和扩展方向可控的快速搜索算法。采用传统分块算法一次栅格化数据空间;综合考虑非空栅格、最近点数目及一次划分边长,计算二次栅格化的边长;在局部搜索过程中控制扩展方向,优先在最有可能出现的栅格中进行搜索。实验结果表明,与现存的方法相比,该算法在搜索时间上至少减少了20%。 展开更多
关键词 点云数据 最小包围盒 栅格 k近邻 范围搜索
下载PDF
上一页 1 2 96 下一页 到第
使用帮助 返回顶部