期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
基于分布式压缩感知和边缘计算的配电网电能质量数据压缩存储方法 被引量:60
1
作者 王鹤 李石强 +1 位作者 于华楠 张健 《电工技术学报》 EI CSCD 北大核心 2020年第21期4553-4564,共12页
针对配电网中电能质量数据日益庞大且谐波污染划分困难的问题,提出一种基于分布式压缩感知和边缘计算的电能质量数据压缩存储方法。创新之处在于:该方法是基于同步正交匹配追踪算法和K-SVD字典学习算法提出一种自适应联合重构算法,并将... 针对配电网中电能质量数据日益庞大且谐波污染划分困难的问题,提出一种基于分布式压缩感知和边缘计算的电能质量数据压缩存储方法。创新之处在于:该方法是基于同步正交匹配追踪算法和K-SVD字典学习算法提出一种自适应联合重构算法,并将该重构方法应用到以分布式压缩感知为边缘算法的云边协同框架中,在云端通过对边缘上传的字典原子和测量值进行分析,实现电能质量数据的压缩存储,此外,还可以依据各节点稀疏系数间的互相关度实现配电网的谐波污染动态分区。仿真结果表明:该算法不仅能以很高的精度实现电能质量数据的压缩,节省数据存储空间,还对配电网的谐波污染分区具有借鉴意义。 展开更多
关键词 配电网 分布式压缩感知 边缘计算 k-svd算法 谐波污染划分
下载PDF
压缩感知在医学图像重建中的最新进展 被引量:19
2
作者 焦鹏飞 李亮 赵骥 《CT理论与应用研究(中英文)》 2012年第1期133-147,共15页
CS理论是一种新兴的信号获取与处理理论,通过减少信号重建所需的数据(少于奈奎斯特定理所要求的最小数目),来缩短信号采样时间,减少计算量,并在一定程度上保持原有图像的重建质量。由于该理论的这些显著优点,使得其在医学成像领域引起... CS理论是一种新兴的信号获取与处理理论,通过减少信号重建所需的数据(少于奈奎斯特定理所要求的最小数目),来缩短信号采样时间,减少计算量,并在一定程度上保持原有图像的重建质量。由于该理论的这些显著优点,使得其在医学成像领域引起了广泛关注,取得了很大进展。本文介绍了压缩感知理论在医学成像中的发展历程和最新进展,详细介绍一种基于字典学习的新型压缩感知自适应重建算法,最后通过计算机模拟实验对该方法进行了初步验证。 展开更多
关键词 CS理论 医学成像 图像重建 字典学习 k-svd
下载PDF
K-SVD和OMP算法在超声信号去噪中的应用 被引量:12
3
作者 魏东 周健鹏 《应用声学》 CSCD 北大核心 2016年第2期95-101,共7页
针对在线采集时超声波检测信号中存在大量噪声,降低了材料内部缺陷诊断准确性的问题,提出了一种基于广义K+奇异值分解算法(K-SVD)和正交匹配追踪算法(OMP)相结合的超声回波信号去噪算法。该算法利用K-SVD算法将Gabor字典训练成能够最有... 针对在线采集时超声波检测信号中存在大量噪声,降低了材料内部缺陷诊断准确性的问题,提出了一种基于广义K+奇异值分解算法(K-SVD)和正交匹配追踪算法(OMP)相结合的超声回波信号去噪算法。该算法利用K-SVD算法将Gabor字典训练成能够最有效反映信号结构特征的超完备字典,然后基于训练完成的超完备字典,用OMP算法把一定数量的字典原子进行线性组合来构成原始信号,从而实现信号的去噪。通过仿真实验将本文方法与传统的小波阈值去噪方法进行了对比研究。实验结果表明,该方法对超声回波信号的去噪效果优于小波阈值去噪方法,且噪声越大对比越明显,不仅可更有效地滤除信号中的高斯白噪声,提高信噪比,且尽可能保留了原始信号有用信息。 展开更多
关键词 超声回波 k-svd算法 OMP算法 小波去噪
下载PDF
基于多尺度字典的红外与微光图像融合 被引量:9
4
作者 薛模根 刘存超 +1 位作者 徐国明 袁宏武 《红外技术》 CSCD 北大核心 2013年第11期696-701,共6页
基于人类视觉系统及信号的过完备稀疏表示理论,提出了一种基于多尺度字典的红外与微光图像融合方法。首先把输入的红外与微光图像按照高斯金字塔模型分解,用DCT字典作为初始字典按照四叉树的结构进行分解,对于各尺度的字典按照K-SVD算... 基于人类视觉系统及信号的过完备稀疏表示理论,提出了一种基于多尺度字典的红外与微光图像融合方法。首先把输入的红外与微光图像按照高斯金字塔模型分解,用DCT字典作为初始字典按照四叉树的结构进行分解,对于各尺度的字典按照K-SVD算法独立训练更新,构造出多尺度学习字典。其次在该字典下利用改进的OMP算法得到输入源图像各自的稀疏系数,然后按照最优化融合图像与输入源图像的欧氏距离、融合图像方差的准则,建立一个融合图像稀疏系数的最优化函数,最后通过求解该函数的l1范数得到融合图像。实验结果表明:该算法的融合效果优于小波变换法、Laplacian塔型方法以及PCA方法等传统融合方法。 展开更多
关键词 图像融合 稀疏表示 多尺度字典 四叉树 k svd算法 最优化函数
下载PDF
一种改进K-奇异值分解稀疏表示图像去噪算法 被引量:8
5
作者 孔英会 胡启杨 《科学技术与工程》 北大核心 2018年第1期287-292,共6页
为解决传统K-奇异值分解(K-SVD)算法字典训练耗时过长以及低信噪比情形下去噪效果不佳的问题,提出了一种改进算法。首先将原始含噪图像进行高低频分离,然后对图像的高频部分使用基于残差比阈值的批量正交匹配追踪算法(Batch-OMP)实现稀... 为解决传统K-奇异值分解(K-SVD)算法字典训练耗时过长以及低信噪比情形下去噪效果不佳的问题,提出了一种改进算法。首先将原始含噪图像进行高低频分离,然后对图像的高频部分使用基于残差比阈值的批量正交匹配追踪算法(Batch-OMP)实现稀疏重构,最后将图像的高低频部分叠加完成最终的去噪。实验结果表明,相较于小波变换去噪、DCT稀疏表示去噪以及传统K-SVD稀疏表示去噪,改进的算法能够更好地保留图像的边缘轮廓信息,并且去噪时间明显缩短。 展开更多
关键词 k-奇异值分解(k-svd)算法 图像去噪 残差比阈值 稀疏表示
下载PDF
基于字典学习的雷达高分辨距离像目标识别 被引量:8
6
作者 冯博 杜兰 +1 位作者 张学峰 刘宏伟 《电波科学学报》 EI CSCD 北大核心 2012年第5期897-905,共9页
提出一种基于字典学习的雷达高分辨距离像(HRRP)目标识别算法。该算法依据对测试样本的信噪比估计,可以自适应地确定测试阶段稀疏分解的稀疏度系数。相比于传统识别算法,文中算法对目标的识别性能更好,且对噪声的鲁棒性更强。另外,文中... 提出一种基于字典学习的雷达高分辨距离像(HRRP)目标识别算法。该算法依据对测试样本的信噪比估计,可以自适应地确定测试阶段稀疏分解的稀疏度系数。相比于传统识别算法,文中算法对目标的识别性能更好,且对噪声的鲁棒性更强。另外,文中算法可以在只训练部分角域数据(不完备训练集)的条件下较好地识别全角域数据,可应用于HRRP数据库的扩展。基于实测数据的识别试验验证了该算法的有效性。 展开更多
关键词 雷达自动目标识别 高分辨距离像 稀疏表示 字典学习 k次奇异值分解算法
下载PDF
基于L_(1/2)正则化的超分辨率图像重建算法 被引量:7
7
作者 王欢 王永革 《计算机工程》 CAS CSCD 2012年第20期191-194,共4页
为提高图像重建质量,研究超分辨率图像重建技术与稀疏表示理论,提出一种基于L1/2正则化的超分辨率图像重建算法。将L1/2正则化理论运用到字典学习中,利用学习得到的字典重建高分辨率图像。实验结果表明,该算法的图像重建效果优于基于L1... 为提高图像重建质量,研究超分辨率图像重建技术与稀疏表示理论,提出一种基于L1/2正则化的超分辨率图像重建算法。将L1/2正则化理论运用到字典学习中,利用学习得到的字典重建高分辨率图像。实验结果表明,该算法的图像重建效果优于基于L1正则化的超分辨率图像重建算法。 展开更多
关键词 L1 2正则化 稀疏表示 超分辨率图像重建 k-svd算法 字典学习 训练样本
下载PDF
基于快速稀疏表示的医学图像压缩 被引量:6
8
作者 赵海峰 鲁毓苗 +1 位作者 陆明 陈思宝 《计算机工程》 CAS CSCD 2014年第4期233-236,共4页
随着数字医学图像数据量的日益增大,有必要采取一定的图像压缩技术进行压缩存储。为此,提出基于快速稀疏表示的医学图像压缩方法。使用K-奇异值分解算法构造医学图像过完备字典,采用批量正交匹配追踪(Batch-OMP)算法进行稀疏编码。该方... 随着数字医学图像数据量的日益增大,有必要采取一定的图像压缩技术进行压缩存储。为此,提出基于快速稀疏表示的医学图像压缩方法。使用K-奇异值分解算法构造医学图像过完备字典,采用批量正交匹配追踪(Batch-OMP)算法进行稀疏编码。该方法只需要存储稀疏编码非零位置的系数信息,利用过完备字典即可实现原始医学图像的重构。实验结果表明,该方法可提高图像稀疏编码的速度,与正交匹配追踪(OMP)算法相比可提速40%左右,并且图像重构效果优于联合图像专家组(JPEG)算法和多级树集合分裂(SPIHT)算法的压缩效果,相对JPEG压缩的图像峰值信噪比平均提高18%,相对SPIHT算法平均提高50%。 展开更多
关键词 稀疏表示 医学图像压缩 ksvd算法 稀疏编码 OMP算法 Batch—OMP算法
下载PDF
自适应学习字典的信号稀疏表示方法及其在轴承故障诊断中的应用 被引量:6
9
作者 张成 黄伟国 +3 位作者 马玉强 阙红波 江星星 朱忠奎 《振动工程学报》 EI CSCD 北大核心 2022年第5期1278-1288,共11页
信号稀疏表示的过完备字典根据构造方式分为解析字典和学习字典两大类。解析字典结构固定,自适应性差。构建解析字典需要充分分析振动信号的振荡特性,获取充足的先验知识。学习字典摆脱了先验知识的桎梏,可以直接从信号中自适应地训练... 信号稀疏表示的过完备字典根据构造方式分为解析字典和学习字典两大类。解析字典结构固定,自适应性差。构建解析字典需要充分分析振动信号的振荡特性,获取充足的先验知识。学习字典摆脱了先验知识的桎梏,可以直接从信号中自适应地训练学习出来,自适应性强。结合信号保真能力较好的广义极小极大凹罚函数,提出了基于自适应学习字典的信号稀疏表示方法,改进了K‐SVD算法中样本训练矩阵的构造方式,减少了运算时间,并且利用软阈值算法弥补了学习字典对噪声抵抗性较差的缺点。最后在缺乏先验知识的条件下,分别在轴承的仿真信号和实验信号的分析过程中,运用所提出方法实现故障诊断。 展开更多
关键词 故障诊断 轴承 稀疏表示 ksvd算法 字典学习 GMC罚函数
下载PDF
基于改进K-SVD算法在牛脸识别上的应用 被引量:5
10
作者 赵建敏 姜世奇 李琦 《传感器与微系统》 CSCD 北大核心 2021年第10期158-160,共3页
为了适应精准畜牧业理念,提出了一种改进的K-SVD算法用于牛的个体身份识别。在K-SVD算法基础上,更改了稀疏编码阶段字典原子的选择方式,使算法更加适用于图像分类问题。构造了包含20头牛的牛脸图像数据集IMCFR20,利用该数据集分析稀疏... 为了适应精准畜牧业理念,提出了一种改进的K-SVD算法用于牛的个体身份识别。在K-SVD算法基础上,更改了稀疏编码阶段字典原子的选择方式,使算法更加适用于图像分类问题。构造了包含20头牛的牛脸图像数据集IMCFR20,利用该数据集分析稀疏度与字典原子数对识别效果的影响。实验结果表明:改进后的算法识别率达到90%以上,识别效果有了较大提升,为利用图像进行牛的个体识别问题提供了可行的方案。 展开更多
关键词 个体识别 牛脸 稀疏表示 k-svd算法
下载PDF
基于K-SVD算法的数字图像自适应修复方法
11
作者 王彦龙 高俊杰 杨阳 《现代电子技术》 北大核心 2024年第13期15-18,共4页
为了提升数字图像的完整性和清晰度,提出一种基于K-SVD算法的数字图像自适应修复方法。通过FCM算法将数字图像划分成不同的图像块,将不同类别的数字图像依据K-SVD算法的稀疏编码和字典更新模块进行训练,获取各个不同类别数字图像块的字... 为了提升数字图像的完整性和清晰度,提出一种基于K-SVD算法的数字图像自适应修复方法。通过FCM算法将数字图像划分成不同的图像块,将不同类别的数字图像依据K-SVD算法的稀疏编码和字典更新模块进行训练,获取各个不同类别数字图像块的字典,求出其稀疏系数,结合字典和稀疏系数更新数字图像中的每一类图像块,完成数字图像中每一类图像块的修复或重构,将修复好的图像块放回原数字图像中,实现数字图像的自适应修复。实验结果表明,该方法能够有效地恢复图像的细节和结构,修复后的数字图像均方根误差低,并且具有较高的峰值信噪比,同时,修复后的数字图像与原图像的结构相似性高达0.95,且在数字图像修复效率方面具备显著优势。 展开更多
关键词 FCM算法 k-svd算法 稀疏编码 更新字典 数字图像 图像细节 图像聚类 图像修复
下载PDF
一种基于稀疏表示的红外与微光图像的融合方法 被引量:4
12
作者 刘存超 薛模根 《红外》 CAS 2013年第8期21-24,39,共5页
根据人类视觉系统及信号的过完备稀疏表示理论,提出了一种基于稀疏表示的红外与微光图像融合算法。该方法首先把图像分割成部分重叠的图像块,由正交匹配追踪算法完成图像块的稀疏分解;然后采用最大值融合准则选择融合系数并完成图像块... 根据人类视觉系统及信号的过完备稀疏表示理论,提出了一种基于稀疏表示的红外与微光图像融合算法。该方法首先把图像分割成部分重叠的图像块,由正交匹配追踪算法完成图像块的稀疏分解;然后采用最大值融合准则选择融合系数并完成图像块的重构,得到融合结果图像。实验结果表明,本文算法的融合效果优于小波变换法、Laplacian塔型方法以及PCA方法等传统融合方法。 展开更多
关键词 图像融合 稀疏表示 k-svd算法 客观评价
下载PDF
基于稀疏表示的SAR图像压缩方法研究 被引量:4
13
作者 蔡红 《计算机工程与应用》 CSCD 2012年第24期177-181,共5页
基于过完备字典的图像稀疏表示是一种新的图像表示理论,利用过完备字典的冗余性可以有效地捕捉图像的各种结构特征,从而实现图像的有效表示。采用基于过完备字典稀疏表示的方法实现SAR图像的压缩。为了得到表示图像所需要的信息,只需要... 基于过完备字典的图像稀疏表示是一种新的图像表示理论,利用过完备字典的冗余性可以有效地捕捉图像的各种结构特征,从而实现图像的有效表示。采用基于过完备字典稀疏表示的方法实现SAR图像的压缩。为了得到表示图像所需要的信息,只需要存储稀疏分解的系数极其对应的坐标,实现压缩的目的。采用K-SVD算法实现过完备字典的构造。K-SVD算法是一种基于学习的算法,由于训练样本全部来自于图像本身,因此字典能够更好地逼近图像本身的结构,实现稀疏表示。仿真表明对于SAR图像的压缩,算法是有效的,并且优于基于DCT的Jpeg算法和基于小波变换的EZW和SPIHT算法。 展开更多
关键词 稀疏表示 图像压缩 k-svd算法 小波变换
下载PDF
基于双层字典学习的低剂量CT图像重建算法 被引量:4
14
作者 朱雪茹 李勇明 +3 位作者 李传明 李志超 王健 刘燕 《北京生物医学工程》 2017年第6期584-590,共7页
目的低剂量投影条件下的CT图像重建。方法采用双层K-奇异值分解(K-singular value decomposition,K-SVD)字典训练的学习方法进行图像的超分辨率重建。字典学习方法中采用KSVD算法,稀疏编码采用正交匹配追踪(orthogonal matching pursuit... 目的低剂量投影条件下的CT图像重建。方法采用双层K-奇异值分解(K-singular value decomposition,K-SVD)字典训练的学习方法进行图像的超分辨率重建。字典学习方法中采用KSVD算法,稀疏编码采用正交匹配追踪(orthogonal matching pursuit,OMP)算法。该算法首先利用训练库进行第一层字典训练,然后利用第一层训练的字典对低分辨率图像进行重建。进而将重建图像作为第二层待重建图像的输入,这样使得第二层输入图像含有较多的高频细节信息,因此能在重构的过程中恢复更多的细节信息,让高分辨率重构图像达到较好的效果。结果双层字典重建效果明显优于KSVD算法,重建图像更接近于原始高分辨率CT图像。结论本研究对双层字典训练学习的框架进行反迭代投影的全局优化改进,改善了图像的重建质量。 展开更多
关键词 低剂量投影 k-svd算法 稀疏编码 双层字典学习 CT重建
下载PDF
基于双字典自适应学习算法的低采样率CT重建 被引量:2
15
作者 栾峰 杨帆 +1 位作者 蔡睿智 杨晨 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第12期1709-1716,共8页
在医疗诊断中,稀疏采样能减少CT扫描过程中辐射对患者的伤害.但直接对稀疏采样后的投影数据进行重建,会使CT重建后的图像出现失真、伪影等问题.为保证低采样率下重建图像的质量,提出了双字典自适应学习算法,参照Sparse-Land模型的双字... 在医疗诊断中,稀疏采样能减少CT扫描过程中辐射对患者的伤害.但直接对稀疏采样后的投影数据进行重建,会使CT重建后的图像出现失真、伪影等问题.为保证低采样率下重建图像的质量,提出了双字典自适应学习算法,参照Sparse-Land模型的双字典学习框架,将K-SVD算法与双字典学习算法框架相结合得到补全投影数据,利用FBP算法进行重建得到高质量的重建图像.实验结果表明,在低采样率下使用所提方法进行CT重建的图像质量优于COMP双字典学习算法和MOD双字典学习算法,并且此方法有效提高了CT图像重建在低采样率时的性能. 展开更多
关键词 CT图像重建 k-svd算法 双字典学习算法 自适应学习算法 FBP算法
下载PDF
字典学习的K-SVD算法分析 被引量:2
16
作者 牛秀秀 华敏杰 +1 位作者 狄燕飞 相鹏 《中国传媒大学学报(自然科学版)》 2017年第1期47-50,共4页
分析了字典学习的K-SVD算法,通过引入K-Means计算方法,将K-Means方法推广到用于字典学习的K-SVD计算方法中;分析和描述了K-SVD计算过程,指出了K-SVD方法与K-Means方法之间的关系,最后观察图像数据训练用于稀疏表示的字典。
关键词 k-Means方法 字典学习 稀疏表示 k-svd方法
下载PDF
基于稀疏表示的阵列声波测井仪数据无损压缩传输方法 被引量:3
17
作者 李明 尹时松 +3 位作者 张宁 李波宏 庄献华 李江山 《测控技术》 2022年第5期106-112,共7页
交叉多极子阵列声波测井仪在井下信号采集的同时,采用无损压缩提升单位时间内上传数据量,是目前主流的仪器上传带宽增加方式。针对传统压缩方法压缩率较低,导致仪器在单位深度地层工作时长过长的问题,从信号稀疏表示的角度出发,对采集... 交叉多极子阵列声波测井仪在井下信号采集的同时,采用无损压缩提升单位时间内上传数据量,是目前主流的仪器上传带宽增加方式。针对传统压缩方法压缩率较低,导致仪器在单位深度地层工作时长过长的问题,从信号稀疏表示的角度出发,对采集的多路声波波列采用预先构建的稀疏变换矩阵进行稀疏变换,将求解的稀疏表示系数和其重构信号与原始信号的误差进行压缩编码上传;地面系统通过相同的稀疏变换矩阵进行信号重构,实现解码;其中,稀疏变换矩阵采用K-SVD算法进行预训练,提升稀疏变换系数的稀疏度与重构信号精度,进一步降低上传的压缩编码长度。在HB油田3口井实际测井资料的实验中,本方法与目前主流的测井数据压缩方法相比,压缩率平均提升约17.3%;在4口井的阵列声波实际测井作业的应用测试中,作业效率平均提升约20.2%。结果表明,数据压缩传输算法极大地提升了阵列声波测井时效,在保证数据采集质量的同时,实现了阵列声波仪器的高速测量。 展开更多
关键词 阵列声波测井 信号稀疏表示 k-svd算法
下载PDF
基于自适应K-SVD字典的视频帧稀疏重建算法
18
作者 钱阳 李雷 袁安安 《计算机技术与发展》 2017年第6期36-40,共5页
压缩感知理论的一个重要前提是找到信号的稀疏域,其直接影响着算法的重构精度,研究快速高效的信号稀疏表示方法具有重大的现实意义。为了提高字典训练速度与性能,基于传统的K-SVD算法,提出了一种自适应K-SVD字典学习算法(Adaptive K-SVD... 压缩感知理论的一个重要前提是找到信号的稀疏域,其直接影响着算法的重构精度,研究快速高效的信号稀疏表示方法具有重大的现实意义。为了提高字典训练速度与性能,基于传统的K-SVD算法,提出了一种自适应K-SVD字典学习算法(Adaptive K-SVD)。该算法交替执行稀疏编码阶段和字典更新阶段。在稀疏编码阶段,通过引入自适应稀疏约束机制,以获得更稀疏的表示系数,从而进一步提高字典的更新效率;而在字典更新阶段,则使用经典K-SVD的字典更新方式来实现字典原子的逐列更新。将所提算法应用于压缩感知理论的信号稀疏表示中,实现视频帧的稀疏重建。仿真对比实验结果表明,所提算法比经典的K-SVD算法的字典训练速度更快,稀疏表示性能更优,且能有效减少压缩感知的重构误差。 展开更多
关键词 k-svd算法 自适应k-svd算法 字典学习 稀疏表示 压缩感知
下载PDF
一种基于动态字典学习的SAR图像目标识别算法 被引量:2
19
作者 王保云 张逸为 +2 位作者 张荣 古今 王敏昆 《光电工程》 CAS CSCD 北大核心 2013年第6期17-25,共9页
本文提出了一种应用于SAR图像目标识别的动态字典学习算法,该算法通过在字典学习过程中自动删除和增加字典条目来调整字典表示性能与尺寸。删除操作是在删除代价的约束下针对相关度高或利用率低的字典条目进行,而增加操作是在增加代价... 本文提出了一种应用于SAR图像目标识别的动态字典学习算法,该算法通过在字典学习过程中自动删除和增加字典条目来调整字典表示性能与尺寸。删除操作是在删除代价的约束下针对相关度高或利用率低的字典条目进行,而增加操作是在增加代价的约束下针对信号表示的残留误差的主分量进行,通过交替执行删除和增加操作来不断优化字典,使其表示能力达到最佳。在MSTAR数据集上的实验验证了算法性能,并给出了相应的参数调整建议。从实验结果和分析可看出,该算法具有识别率高、算法稳定等特点。 展开更多
关键词 稀疏表达 k-svd算法 动态字典学习 SAR图像分类 自动目标识别
下载PDF
基于层次结构化字典学习的人脸表情识别 被引量:2
20
作者 罗源 张灵 +2 位作者 陈云华 朱思豪 田小路 《计算机应用研究》 CSCD 北大核心 2017年第11期3514-3517,共4页
针对传统稀疏表示方法构建的字典不具备判别性的问题,以K-SVD算法为基础,对判别字典的构建和分类求解进行了研究,提出一种基于层次结构化字典学习的表情识别方法。先将训练样本切割出眼眉、脸颊和嘴三部分,对分割的各部分利用K-SVD算法... 针对传统稀疏表示方法构建的字典不具备判别性的问题,以K-SVD算法为基础,对判别字典的构建和分类求解进行了研究,提出一种基于层次结构化字典学习的表情识别方法。先将训练样本切割出眼眉、脸颊和嘴三部分,对分割的各部分利用K-SVD算法得到块字典向量,再用层次分析法的权重赋值方法求块字典向量的权重值,构成各类子字典。将所有的子字典进行联合,用结构化字典学习算法求解。测试样本的归类取决于求解结果重构的效果。在JAFFE和CK表情库上的实验表明,该算法在保证了字典判别性的同时,也达到了较高的识别率。 展开更多
关键词 结构化字典 k-svd算法 层次分析法 人脸表情识别
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部