Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial i...Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial intelligence and wearable electronics.In this work,silver nanowires(AgNWs)are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent,and boron nitride(BN)is performed to prepare BN nanosheets(BNNS)with the help of isopropyl alcohol and ultrasonication-assisted peeling method,which are compounded with aramid nanofibers(ANF)prepared by chemical dissociation,respectively,and the(BNNS/ANF)-(AgNWs/ANF)thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the"vacuum-assisted filtration and hot-pressing"method.Janus(BNNS/ANF)-(AgNWs/ANF)composite films exhibit"one side insulating,one side conducting"performance,the surface resistivity of the BNNS/ANF surface is 4.7×10^(13) Ω,while the conductivity of the AgNWs/ANF surface is 5,275 S/cm.And Janus(BNNS/ANF)-(AgNWs/ANF)composite film with thickness of 95 pm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K)and superior electromagnetic interference shielding effectiveness of 70 dB.The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa.It also has good temperature-voltage response characteristics(high Joule heating temperature at low supply voltage(5 V,215.0℃),fast response time(10 s)),excellent electrical stability and reliability(stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests).展开更多
In order to get the natural convection heat transfer mechanism of molten salt, the experimental investigation of natural convective heat transfer of LiNO3was studied after it was simulated by numerical calculation. Ex...In order to get the natural convection heat transfer mechanism of molten salt, the experimental investigation of natural convective heat transfer of LiNO3was studied after it was simulated by numerical calculation. Experiment was carried out on the nat-ural convection heat transfer of air and water around the fine wire using the method of Joule heating. The results showed that the natural convection heat transfer of air and water around the fine wire agreed well with Fand's correlation. Based on the aforementioned experiment, the natural convection heat transfer of molten salt LiNO3was studied by experiment and the same results were got. Therefore, the natural convection heat transfer of molten salt can be calculated by Fand's correlation, which takes into consideration the effect of viscosity dissipation.展开更多
太阳风向磁层-电离层(Magnetosphere and Ionosphere,MI)系统输入能量,而输入的能量随后在MI系统中消耗.本文从能量守恒原理出发,讨论太阳风-磁层-电离层(SMI)耦合过程中的能流路径和能量收支的定量关系.主要讨论9个问题:(1)太阳风向MI...太阳风向磁层-电离层(Magnetosphere and Ionosphere,MI)系统输入能量,而输入的能量随后在MI系统中消耗.本文从能量守恒原理出发,讨论太阳风-磁层-电离层(SMI)耦合过程中的能流路径和能量收支的定量关系.主要讨论9个问题:(1)太阳风向MI系统的能量输入,(2)MI系统对能量输入的响应,(3)环电流的能量消耗,(4)极区电离层焦耳加热的能量消耗,(5)极光粒子沉降的能量消耗,(6)磁尾能量的消耗、储存以及返回下游太阳风,(7)平静期间的能量积累与释放,(8)能量在不同能汇中的分配,(9)评价能量函数的准则和方法.展开更多
Although MXene sheets possess high electrical conductivity and rich surface chemistry and are well suit-able for fabricating electrically conductive nanocomposites for electromagnetic interference(EMI)shield-ing appli...Although MXene sheets possess high electrical conductivity and rich surface chemistry and are well suit-able for fabricating electrically conductive nanocomposites for electromagnetic interference(EMI)shield-ing applications,it remains challenging for MXene nanocomposites to achieve tunable EMI shielding per-formances and customized geometries.Herein,an aqueous MXene/sodium alginate ink is developed to print aerogel meshes with customized geometries using a direct ink writing approach.An ion-enhanced strategy is proposed to reinforce the printed aerogel meshes by multi-level cross-linking.The resultant 3D printed aerogel mesh exhibits an ultrahigh electrical conductivity of 2.85×10^(3)S m^(−1),outstanding mechanical properties,and excellent structural stability in wet environment.More importantly,a wide range of tunable EMI shielding efficiencies from 45 to 100 dB is achieved by the structural design of the 3D printed ion-enhanced MXene/sodium alginate aerogel meshes.As a Joule heater,in addition,the printed aerogel meshes can achieve a wide temperature range of 40-135℃at low driving voltages.This work demonstrates a direct ink writing approach for the fabrication of ion-enhanced MXene/sodium al-ginate aerogel meshes with tunable EMI shielding properties and multi-functionalities for applications in many scenarios.展开更多
The development of multifunctional materials and synergistic applications of various functions are important conditions for integrated and miniaturized equipment.Here,we developed asymmetric MXene/aramid nanofibers/po...The development of multifunctional materials and synergistic applications of various functions are important conditions for integrated and miniaturized equipment.Here,we developed asymmetric MXene/aramid nanofibers/polyimides(AMAP)aerogels with different modules using an integrated molding process.Cleverly asymmetric modules(layered MXene/aramid nanofibers section and porous MXene/aramid nanofibers/polyimides section)interactions are beneficial for enhanced performances,resulting in low reflection electromagnetic interference(EMI)shielding(specific shielding effectiveness of 2483(dB·cm^(3))/g and a low R-value of 0.0138),high-efficiency infrared radiation(IR)stealth(ultra-low thermal conductivity of 0.045 W/(m·K)and IR emissivity of 0.32 at 3–5μm and 0.28 at 8–14μm),and excellent thermal management performances of insulated Joule heating.Furthermore,these multifunctional AMAP aerogels are suitable for various application scenarios such as personal and building protection against electromagnetic pollution and cold,as well as military equipment protection against infrared detection and EMI.展开更多
Long-term research has been done on the unstable behaviors and electron emission from microprotrusions, but the whole reason is still not clear. It is difficult to study instabilities experimentally since vacuum break...Long-term research has been done on the unstable behaviors and electron emission from microprotrusions, but the whole reason is still not clear. It is difficult to study instabilities experimentally since vacuum breakdown can happen. In this model, we show the factors that lead to thermal instability during field emission. After the Nottingham flux inversion, we see a considerable rise in temperature above a threshold electric field, followed by a thermal runaway. Cathode spots experience unexpected thermal defects and breakdowns, which is a phenomenon known as the Nottingham Inversion Instability. Although the idea of micro protrusions is frequently used in modeling studies, this study concentrates on the thermal effects during field emission from a planar cathode without taking the existence of such protrusions into account. The study reveals how Nottingham’s heating effect changes from heating to cooling. In our study, we have investigated the interaction between Nottingham, Joule heating, and effective work function. The results also imply that faster reaching critical temperature is associated with larger maximum beta values. These discoveries have significance for the design and improvement of high-voltage systems and help to understand vacuum breakdown. The possibility of cathode spot ignition and subsequent vacuum breakdown is predicted by our model, which would make it possible to create a self-consistent model for that.展开更多
High entropy alloys(HEA)are frequently employed as catalysts in electrocatalytic hydrogen evolution.However,the traditional high entropy alloy synthesis methods are time-consuming,energy-intensive,and environmentally ...High entropy alloys(HEA)are frequently employed as catalysts in electrocatalytic hydrogen evolution.However,the traditional high entropy alloy synthesis methods are time-consuming,energy-intensive,and environmentally polluting,which limits their application in the hydrogen evolution reaction(HER).This study leveraged the capabilities of flash Joule heating(FJH)to synthesize carbon-supported high-entropy alloy sulfide nanoparticles(CC-S-HEA)on carbon cloth(CC)with good self-standing properties within 300 ms.The carbon thermal shock generated by the Joule heating could pyrolyze the sulfur source into gas,resulting in numerous pore structures and defects on CC,forming an S-doped carbon substrate(CC-S).Then the S atoms were used to stably anchor the metal atoms on CC-S to form high-density uniformly dispersed HEA particles.The electrochemical test results demonstrated that CC-S-HEA prepared at 60 V flash voltage had HER performance comparable to Pt/C.The density functional theory(DFT)calculation indicated that the S atoms on CC-S accelerated the electron transfer between the carbon substrate and HEA particles.Moreover,the unique electronic structure of CC-S-HEA was beneficial to H*adsorption and promoted catalytic kinetics.The simplicity and versatility of FJH synthesis are of great significance for optimizing the synthesis of HEA and improving the quality of HEA products,which provides a broad application prospect for the synthesis of nanocatalysts with efficient HER performance.展开更多
Intelligent electromagnetic interference(EMI)shielding modulators with a wide tuning range and cyclic stability are urgently needed but their fabrication remains challenging.A gel-like MXene/norepinephrine ink is deve...Intelligent electromagnetic interference(EMI)shielding modulators with a wide tuning range and cyclic stability are urgently needed but their fabrication remains challenging.A gel-like MXene/norepinephrine ink is developed and multifunctional MXene gratings with wide EMI shielding effectiveness(SE)tuning range,superior reversibility,and high mechanical flexibility are constructed by direct ink writing approach for dynamic EMI shielding and patterned Joule heating applications.The modulable MXene/norepinephrine grating with a high conductivity of 3510 S·cm-1 can conveniently realize the seamless modulation of the EMI SE by adjusting the angle between the MXene grating filaments and the electric field of the incident electromagnetic waves,offering highly reversible switching between shielding“On”(28.0 dB)and“Off”(0.5 dB)states.Notably,due to the optimized integration of the MXene ink and the rationally designed pattern,a superior specific EMI SE of 95,688.2 dB·cm^(2)·g^(-1) is achieved in the“On”state.Furthermore,the MXene/norepinephrine ink can be used to fabricate many complex patterned gratings with superior stability,instant responsibility,and superb mechanical flexibility,exhibiting a unique patterned Joule heating behavior.Direct writing of multifunctional gratings paves a means for developing intelligent EMI shielding materials,wearable electronic devices,and advanced thermal management materials.展开更多
基金The authors are grateful for the support and funding from the Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120093)Foundation of National Natural Science Foundation of China(Nos.U21A2093 and 51973173)Technological Base Scientific Research Projects(Highly Thermal conductivity Nonmetal Materials).
文摘Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry,artificial intelligence and wearable electronics.In this work,silver nanowires(AgNWs)are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent,and boron nitride(BN)is performed to prepare BN nanosheets(BNNS)with the help of isopropyl alcohol and ultrasonication-assisted peeling method,which are compounded with aramid nanofibers(ANF)prepared by chemical dissociation,respectively,and the(BNNS/ANF)-(AgNWs/ANF)thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the"vacuum-assisted filtration and hot-pressing"method.Janus(BNNS/ANF)-(AgNWs/ANF)composite films exhibit"one side insulating,one side conducting"performance,the surface resistivity of the BNNS/ANF surface is 4.7×10^(13) Ω,while the conductivity of the AgNWs/ANF surface is 5,275 S/cm.And Janus(BNNS/ANF)-(AgNWs/ANF)composite film with thickness of 95 pm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K)and superior electromagnetic interference shielding effectiveness of 70 dB.The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa.It also has good temperature-voltage response characteristics(high Joule heating temperature at low supply voltage(5 V,215.0℃),fast response time(10 s)),excellent electrical stability and reliability(stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests).
基金supported by the Beijing Natural Science Foundation(Grant No. 3132012)the National Basic Research Program of China("973" Program) (Grant No. 2010CB227103)Beijing Municipal Science and Technology Commission of Science and Technology Plan(Grant No. D121100001012002)
文摘In order to get the natural convection heat transfer mechanism of molten salt, the experimental investigation of natural convective heat transfer of LiNO3was studied after it was simulated by numerical calculation. Experiment was carried out on the nat-ural convection heat transfer of air and water around the fine wire using the method of Joule heating. The results showed that the natural convection heat transfer of air and water around the fine wire agreed well with Fand's correlation. Based on the aforementioned experiment, the natural convection heat transfer of molten salt LiNO3was studied by experiment and the same results were got. Therefore, the natural convection heat transfer of molten salt can be calculated by Fand's correlation, which takes into consideration the effect of viscosity dissipation.
文摘太阳风向磁层-电离层(Magnetosphere and Ionosphere,MI)系统输入能量,而输入的能量随后在MI系统中消耗.本文从能量守恒原理出发,讨论太阳风-磁层-电离层(SMI)耦合过程中的能流路径和能量收支的定量关系.主要讨论9个问题:(1)太阳风向MI系统的能量输入,(2)MI系统对能量输入的响应,(3)环电流的能量消耗,(4)极区电离层焦耳加热的能量消耗,(5)极光粒子沉降的能量消耗,(6)磁尾能量的消耗、储存以及返回下游太阳风,(7)平静期间的能量积累与释放,(8)能量在不同能汇中的分配,(9)评价能量函数的准则和方法.
基金Financial support from the National Natural Science Foundation of China(Nos.51922020 and 52090034)the open Foundation of State Key Laboratory of Organic-Inorganic Composites,Beijing University of Chemical Technology(No.OIC-202201001)are gratefully acknowledged.
文摘Although MXene sheets possess high electrical conductivity and rich surface chemistry and are well suit-able for fabricating electrically conductive nanocomposites for electromagnetic interference(EMI)shield-ing applications,it remains challenging for MXene nanocomposites to achieve tunable EMI shielding per-formances and customized geometries.Herein,an aqueous MXene/sodium alginate ink is developed to print aerogel meshes with customized geometries using a direct ink writing approach.An ion-enhanced strategy is proposed to reinforce the printed aerogel meshes by multi-level cross-linking.The resultant 3D printed aerogel mesh exhibits an ultrahigh electrical conductivity of 2.85×10^(3)S m^(−1),outstanding mechanical properties,and excellent structural stability in wet environment.More importantly,a wide range of tunable EMI shielding efficiencies from 45 to 100 dB is achieved by the structural design of the 3D printed ion-enhanced MXene/sodium alginate aerogel meshes.As a Joule heater,in addition,the printed aerogel meshes can achieve a wide temperature range of 40-135℃at low driving voltages.This work demonstrates a direct ink writing approach for the fabrication of ion-enhanced MXene/sodium al-ginate aerogel meshes with tunable EMI shielding properties and multi-functionalities for applications in many scenarios.
基金supported by the National Key R&D Program of China(No.2021YFB3502500)the National Natural Science Foundation of China(Nos.52172091 and 52172295)+1 种基金Open Fund of Key Laboratory of Materials Preparation and Protection for Harsh Environment(Nanjing University of Aeronautics and Astronautics)Ministry of Industry and Information Technology(No.56XCA22042).
文摘The development of multifunctional materials and synergistic applications of various functions are important conditions for integrated and miniaturized equipment.Here,we developed asymmetric MXene/aramid nanofibers/polyimides(AMAP)aerogels with different modules using an integrated molding process.Cleverly asymmetric modules(layered MXene/aramid nanofibers section and porous MXene/aramid nanofibers/polyimides section)interactions are beneficial for enhanced performances,resulting in low reflection electromagnetic interference(EMI)shielding(specific shielding effectiveness of 2483(dB·cm^(3))/g and a low R-value of 0.0138),high-efficiency infrared radiation(IR)stealth(ultra-low thermal conductivity of 0.045 W/(m·K)and IR emissivity of 0.32 at 3–5μm and 0.28 at 8–14μm),and excellent thermal management performances of insulated Joule heating.Furthermore,these multifunctional AMAP aerogels are suitable for various application scenarios such as personal and building protection against electromagnetic pollution and cold,as well as military equipment protection against infrared detection and EMI.
文摘Long-term research has been done on the unstable behaviors and electron emission from microprotrusions, but the whole reason is still not clear. It is difficult to study instabilities experimentally since vacuum breakdown can happen. In this model, we show the factors that lead to thermal instability during field emission. After the Nottingham flux inversion, we see a considerable rise in temperature above a threshold electric field, followed by a thermal runaway. Cathode spots experience unexpected thermal defects and breakdowns, which is a phenomenon known as the Nottingham Inversion Instability. Although the idea of micro protrusions is frequently used in modeling studies, this study concentrates on the thermal effects during field emission from a planar cathode without taking the existence of such protrusions into account. The study reveals how Nottingham’s heating effect changes from heating to cooling. In our study, we have investigated the interaction between Nottingham, Joule heating, and effective work function. The results also imply that faster reaching critical temperature is associated with larger maximum beta values. These discoveries have significance for the design and improvement of high-voltage systems and help to understand vacuum breakdown. The possibility of cathode spot ignition and subsequent vacuum breakdown is predicted by our model, which would make it possible to create a self-consistent model for that.
基金supported by Key Research and Development Project of Xuzhou City(No.KC21287)the National Natural Science Foundation of China(No.51974307).
文摘High entropy alloys(HEA)are frequently employed as catalysts in electrocatalytic hydrogen evolution.However,the traditional high entropy alloy synthesis methods are time-consuming,energy-intensive,and environmentally polluting,which limits their application in the hydrogen evolution reaction(HER).This study leveraged the capabilities of flash Joule heating(FJH)to synthesize carbon-supported high-entropy alloy sulfide nanoparticles(CC-S-HEA)on carbon cloth(CC)with good self-standing properties within 300 ms.The carbon thermal shock generated by the Joule heating could pyrolyze the sulfur source into gas,resulting in numerous pore structures and defects on CC,forming an S-doped carbon substrate(CC-S).Then the S atoms were used to stably anchor the metal atoms on CC-S to form high-density uniformly dispersed HEA particles.The electrochemical test results demonstrated that CC-S-HEA prepared at 60 V flash voltage had HER performance comparable to Pt/C.The density functional theory(DFT)calculation indicated that the S atoms on CC-S accelerated the electron transfer between the carbon substrate and HEA particles.Moreover,the unique electronic structure of CC-S-HEA was beneficial to H*adsorption and promoted catalytic kinetics.The simplicity and versatility of FJH synthesis are of great significance for optimizing the synthesis of HEA and improving the quality of HEA products,which provides a broad application prospect for the synthesis of nanocatalysts with efficient HER performance.
基金support from the National Natural Science Foundation of China(Nos.51922020,52090034 and 52221006)the Open Fund of State Key Laboratory of Organic-Inorganic Composites,Beijing University of Chemical Technology(No.OIC-202201001)is gratefully acknowledged.
文摘Intelligent electromagnetic interference(EMI)shielding modulators with a wide tuning range and cyclic stability are urgently needed but their fabrication remains challenging.A gel-like MXene/norepinephrine ink is developed and multifunctional MXene gratings with wide EMI shielding effectiveness(SE)tuning range,superior reversibility,and high mechanical flexibility are constructed by direct ink writing approach for dynamic EMI shielding and patterned Joule heating applications.The modulable MXene/norepinephrine grating with a high conductivity of 3510 S·cm-1 can conveniently realize the seamless modulation of the EMI SE by adjusting the angle between the MXene grating filaments and the electric field of the incident electromagnetic waves,offering highly reversible switching between shielding“On”(28.0 dB)and“Off”(0.5 dB)states.Notably,due to the optimized integration of the MXene ink and the rationally designed pattern,a superior specific EMI SE of 95,688.2 dB·cm^(2)·g^(-1) is achieved in the“On”state.Furthermore,the MXene/norepinephrine ink can be used to fabricate many complex patterned gratings with superior stability,instant responsibility,and superb mechanical flexibility,exhibiting a unique patterned Joule heating behavior.Direct writing of multifunctional gratings paves a means for developing intelligent EMI shielding materials,wearable electronic devices,and advanced thermal management materials.