Film cooling is an indispensable scheme in the design of highly-efficient cooling configurations to satisfy the thermal protection requirement of turbine hot section components.During the last few decades,vast efforts...Film cooling is an indispensable scheme in the design of highly-efficient cooling configurations to satisfy the thermal protection requirement of turbine hot section components.During the last few decades,vast efforts have been paid on the discrete-hole film cooling enhancement.In this paper,some of the recent literatures related to the passive strategies(such as shaped film cooling holes,upstream ramps,shallow trenches,mesh-fed slots)and the active strategies(such as the use of pulsation modulating device or plasma actuator)for film cooling enhancement are surveyed,with the aim at presenting an updated overview about the state of the art in advanced film cooling.In addition,some challenging issues are also outlined to motivate further investigations in such a broad topic.展开更多
The three-dimensional vortical structures for an impinging transverse jet in the near region were numerically investigated by means of Large-Eddy Simulation (LES). The LES results reproduced the skewed jet shear lay...The three-dimensional vortical structures for an impinging transverse jet in the near region were numerically investigated by means of Large-Eddy Simulation (LES). The LES results reproduced the skewed jet shear layer vortices close to the jet nozzle and the scarf vortex in the near-wall zone in good agreement with the experimental observations. Different vortical modes in the skewed jet shear layer close to the jet nozzle were identified depending upon the velocity ratio between jet and crossflow, namely changing from an approximately axisymmetric mode to a helical one with the velocity ratios varying from 20 to 8. Moreover, the scarf vortex wrapped around the impinging jet in the near-wall zone showed distinct asymmetry with regard to its bilateral spiral legs within the near region. And the entrainment of the ambient crossflow fluids by the scarf vortex in the near-wall zone was appreciably influenced by its asymmetry and in a large part occurred on the surface of the spiral roller structures in the course of spreading downstream.展开更多
The three-dimensional mean and turbulence characteristics of an impingingdensity jet in a confined cross-flow were numerically investigated using the RNG turbulence model.The comparison of the subregion structures and...The three-dimensional mean and turbulence characteristics of an impingingdensity jet in a confined cross-flow were numerically investigated using the RNG turbulence model.The comparison of the subregion structures and gross features between the numerical results and theexperimental data show good agreement. The velocity, Turbulent Kinetic Energy (TKE) andconcentration distributions of the impinging jet in near field were obtained and analyzed. Theresults indicate that the flow and concentration fields of the impinging jet in the crossflowexhibit distinguished three-dimensionality in the near field. There exist upstream wail vortices anddownstream wall jet zones in the impinging region, and the TKE and concentration decays areasymmetrical in relation to the stagnation point. The lateral concentration distribution range inthe impinging region spreads considerably. The enhanced entrainment and mixing of the impinging jetin the confined crossflow are mostly associated with the impinging action and lateral expansion inthe impinging region. The presence of the bottom wall restrains the formation of the span-wiserollers in the transverse jet region and vertical entrainment and mixing in the impinging region andthe transition re-gioa展开更多
The two-phase flow structure and particle dispersion for a dilute particle-laden jet in crossflow (JICF) were experimentally investigated by means of Phase Doppler Anemometry (PDA) measurement. The two-phase flow ...The two-phase flow structure and particle dispersion for a dilute particle-laden jet in crossflow (JICF) were experimentally investigated by means of Phase Doppler Anemometry (PDA) measurement. The two-phase flow experiments were conducted for different flow conditions and solid particle parameters, including the ratio of the jet velocity to crossflow velocity, the particle size and mass loading. The experimental results indicate that the fine particles with the size of 70 micron and the mass loading of 0.05% have a minor influence on the mean and fluctuation velocity fields of the two-phase JICF. However, the fine particle transport by the two-phase JICF is dominantly and preferentially affected by the shear layer vortices and exhibits a somewhat enhanced dispersion as compared to the fluid. For the coarse particles with the particle size ranging from 300 micron to 700 micron and the mass loading less than 0.16%, the effect of the particle parameters on the fluid phase is associated with both the anisotropic properties of the flow field and the trajectory deviation of the settling particles from the fluid. Compared to the single-phase JICF, the two-phase JICF laden with the coarse particles is recognized to possess more pronounced mean velocity alteration and turbulence modulation of the fluid phase in the presence of the particles with the larger particle size and higher mass loading.展开更多
A comprehensive numerical study on the three-dimensional structure of a turbulent jet in crossflow is performed. The jet-to-crossflow velocity ratio (R) varies in the range of 2 - 16; both vertical jets and inclined j...A comprehensive numerical study on the three-dimensional structure of a turbulent jet in crossflow is performed. The jet-to-crossflow velocity ratio (R) varies in the range of 2 - 16; both vertical jets and inclined jets without excess streamwise momentum are considered. The numerical results of the Standard two-equation k-ε model show that the turbulent structure can be broadly categorised according to the jet-to-crossflow velocity ratio. For strong to moderate jet discharges, i.e. R> 4, the jet is characterized by a longitudinal transition through a bent-over phase during which the jet becomes almost parallel with the main freestream, to a sectional vortex-pair flow with double concentration maxima; the computed flow details and scalar mixing characteristics can be described by self-similar relations beyond a dimensionless distance of around 20-60. The similarity coefficients are only weakly dependent on R. The cross-section scalar field is kidney-shaped and bifurcated, vvith distinct double concentration maxima; the aspect ratio is found to be around 1.2. A loss in vertical momentum is ob-served and the added mass coefficient of the jet motion is found to be approximately 1. On the other hand, for weak jets in strong crossflow, i. e. R ≥ 2, the lee of the jet is characterized by a negative pressure region. Although the double vortex flow can stili be noted, the scalar field becomes more symmetrical and no longer bifurcated. The similarity coeffcients are al-so noticeably different. The predicted jet flovv characteristics and mixing rates are well supported by experimental and field dala展开更多
A computational investigation of the mean flow field of turbulent rectangular jets issuing into a narrow channel crossflow is presented. The length of the jet slot spans more than 55% of the crossflow channel bed, lea...A computational investigation of the mean flow field of turbulent rectangular jets issuing into a narrow channel crossflow is presented. The length of the jet slot spans more than 55% of the crossflow channel bed, leaving a small clearance between the jet edge and sidewalls. A finite volume code employing the standard k-εmodel is used to predict the mean, three-dimensional flow field. The mean flow field is investigated for two velocity ratios (6 and 9). Important flow features, such as the formation of different vortical structures and their characteristics owing to different values of the velocity ratio, are discussed. Some predicted results are compared with the experimental data reported in the literature. The predicted mean and turbulent flow properties are shown to be in good agreement with the experimental data.展开更多
The mixing and merging characteristics of multiple tandem jets in crossflow are investigated by use of the Computational Fluid Dynamics (CFD) code FI,UENT. The realizable k - ε model is employed for turbulent elosu...The mixing and merging characteristics of multiple tandem jets in crossflow are investigated by use of the Computational Fluid Dynamics (CFD) code FI,UENT. The realizable k - ε model is employed for turbulent elosure of the Reynolds-averaged Navier-Stokes equations. Numerical experiments are performed for 1-, 2- and 4-jet groups, tbr jet-tocrossflow velocity ratios of R = 4.2 ~ 16.3. The computed velocity and scalar concentration field are in good agreement with experiments using Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF), as well as previous work. The results show that the leading jet behavior is similar to a single free jet in crossflow, while all the downstream rear jets have less bent-over jet trajectories - suggesting a reduced ambient velocity for the rear jets. The concentration decay of the leading jet is greater than that of the rear jets. When normalized by appropriate crossflow momentum length scales, all jet trajectories follow a universal relation regardless of the sequential order of jet position and the nund)er of jets. Supported by the velocity and trajectory measurements, the averaged maximum effective crossflow velocity ratio is computed to be in the range of 0.39 to 0.47.展开更多
The RNG k εturbulence model is adopted to investigate a turbulent round jet issuing into crossflow, with the Reynolds number at jet exit of Re=6000 and jet to crossflow velocity ratio of r=8. With the CFD code, FLU...The RNG k εturbulence model is adopted to investigate a turbulent round jet issuing into crossflow, with the Reynolds number at jet exit of Re=6000 and jet to crossflow velocity ratio of r=8. With the CFD code, FLUENT, the relations of dimensional analysis are successfully reproduced and the calculated coefficients agree well with the experimental measurements of Wong (1991) and Chu (1996). The investigations are then taken on the velocity, stream function and vorticity at the far field of the jet. It shows that at least within the covered range herein, the jet at the far field is self similar.展开更多
For the design and optimization of advanced aero-engines,the prohibitively computational resources required for numerical simulations pose a significant challenge,due to the extensive exploration of design parameters ...For the design and optimization of advanced aero-engines,the prohibitively computational resources required for numerical simulations pose a significant challenge,due to the extensive exploration of design parameters across a vast design space.Surrogate modeling techniques offer a viable alternative for efficiently emulating numerical results within a notably compressed timeframe.This study introduces parametric Reduced-Order Models(ROMs)based on Convolutional Auto-Encoders(CAE),Fully Connected AutoEncoders(FCAE),and Proper Orthogonal Decomposition(POD)to fast emulate spatial distributions of physical variables for a supercritical jet into a supersonic crossflow under different operating conditions.To further accelerate the decision-making process,an optimization model is developed to enhance fuel-oxidizer mixing efficiency while minimizing total pressure loss.Results indicate that CAE-based ROMs exhibit superior prediction accuracy while FCAE-based ROMs show inferior predictive accuracy but minimal uncertainty.The latter may be ascribed to the markedly greater number of hyperparameters.POD-based ROMs underperform in regions of strong nonlinear flow dynamics,coupled with higher overall prediction uncertainties.Both AE-and POD-based ROMs achieve online predictions approximately 9 orders of magnitude faster than conventional simulations.The established optimization model enables the attainment of Pareto-optimal frontiers for spatial mixing deficiencies and total pressure recovery coefficient.展开更多
基金financial support for this project from the National Natural Science Foundation of China(Nos.U1508212 and 51706097)National Science and Technology Major Project,China(No.2017-III-00110037)。
文摘Film cooling is an indispensable scheme in the design of highly-efficient cooling configurations to satisfy the thermal protection requirement of turbine hot section components.During the last few decades,vast efforts have been paid on the discrete-hole film cooling enhancement.In this paper,some of the recent literatures related to the passive strategies(such as shaped film cooling holes,upstream ramps,shallow trenches,mesh-fed slots)and the active strategies(such as the use of pulsation modulating device or plasma actuator)for film cooling enhancement are surveyed,with the aim at presenting an updated overview about the state of the art in advanced film cooling.In addition,some challenging issues are also outlined to motivate further investigations in such a broad topic.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10572084)Shanghai Leading Academic Discipline Project (Grant No. Y0103)
文摘The three-dimensional vortical structures for an impinging transverse jet in the near region were numerically investigated by means of Large-Eddy Simulation (LES). The LES results reproduced the skewed jet shear layer vortices close to the jet nozzle and the scarf vortex in the near-wall zone in good agreement with the experimental observations. Different vortical modes in the skewed jet shear layer close to the jet nozzle were identified depending upon the velocity ratio between jet and crossflow, namely changing from an approximately axisymmetric mode to a helical one with the velocity ratios varying from 20 to 8. Moreover, the scarf vortex wrapped around the impinging jet in the near-wall zone showed distinct asymmetry with regard to its bilateral spiral legs within the near region. And the entrainment of the ambient crossflow fluids by the scarf vortex in the near-wall zone was appreciably influenced by its asymmetry and in a large part occurred on the surface of the spiral roller structures in the course of spreading downstream.
文摘The three-dimensional mean and turbulence characteristics of an impingingdensity jet in a confined cross-flow were numerically investigated using the RNG turbulence model.The comparison of the subregion structures and gross features between the numerical results and theexperimental data show good agreement. The velocity, Turbulent Kinetic Energy (TKE) andconcentration distributions of the impinging jet in near field were obtained and analyzed. Theresults indicate that the flow and concentration fields of the impinging jet in the crossflowexhibit distinguished three-dimensionality in the near field. There exist upstream wail vortices anddownstream wall jet zones in the impinging region, and the TKE and concentration decays areasymmetrical in relation to the stagnation point. The lateral concentration distribution range inthe impinging region spreads considerably. The enhanced entrainment and mixing of the impinging jetin the confined crossflow are mostly associated with the impinging action and lateral expansion inthe impinging region. The presence of the bottom wall restrains the formation of the span-wiserollers in the transverse jet region and vertical entrainment and mixing in the impinging region andthe transition re-gioa
基金supported by the National Natural Science Foundation of China (Grant Nos.10572084,10972134)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20050280008)
文摘The two-phase flow structure and particle dispersion for a dilute particle-laden jet in crossflow (JICF) were experimentally investigated by means of Phase Doppler Anemometry (PDA) measurement. The two-phase flow experiments were conducted for different flow conditions and solid particle parameters, including the ratio of the jet velocity to crossflow velocity, the particle size and mass loading. The experimental results indicate that the fine particles with the size of 70 micron and the mass loading of 0.05% have a minor influence on the mean and fluctuation velocity fields of the two-phase JICF. However, the fine particle transport by the two-phase JICF is dominantly and preferentially affected by the shear layer vortices and exhibits a somewhat enhanced dispersion as compared to the fluid. For the coarse particles with the particle size ranging from 300 micron to 700 micron and the mass loading less than 0.16%, the effect of the particle parameters on the fluid phase is associated with both the anisotropic properties of the flow field and the trajectory deviation of the settling particles from the fluid. Compared to the single-phase JICF, the two-phase JICF laden with the coarse particles is recognized to possess more pronounced mean velocity alteration and turbulence modulation of the fluid phase in the presence of the particles with the larger particle size and higher mass loading.
文摘A comprehensive numerical study on the three-dimensional structure of a turbulent jet in crossflow is performed. The jet-to-crossflow velocity ratio (R) varies in the range of 2 - 16; both vertical jets and inclined jets without excess streamwise momentum are considered. The numerical results of the Standard two-equation k-ε model show that the turbulent structure can be broadly categorised according to the jet-to-crossflow velocity ratio. For strong to moderate jet discharges, i.e. R> 4, the jet is characterized by a longitudinal transition through a bent-over phase during which the jet becomes almost parallel with the main freestream, to a sectional vortex-pair flow with double concentration maxima; the computed flow details and scalar mixing characteristics can be described by self-similar relations beyond a dimensionless distance of around 20-60. The similarity coefficients are only weakly dependent on R. The cross-section scalar field is kidney-shaped and bifurcated, vvith distinct double concentration maxima; the aspect ratio is found to be around 1.2. A loss in vertical momentum is ob-served and the added mass coefficient of the jet motion is found to be approximately 1. On the other hand, for weak jets in strong crossflow, i. e. R ≥ 2, the lee of the jet is characterized by a negative pressure region. Although the double vortex flow can stili be noted, the scalar field becomes more symmetrical and no longer bifurcated. The similarity coeffcients are al-so noticeably different. The predicted jet flovv characteristics and mixing rates are well supported by experimental and field dala
文摘A computational investigation of the mean flow field of turbulent rectangular jets issuing into a narrow channel crossflow is presented. The length of the jet slot spans more than 55% of the crossflow channel bed, leaving a small clearance between the jet edge and sidewalls. A finite volume code employing the standard k-εmodel is used to predict the mean, three-dimensional flow field. The mean flow field is investigated for two velocity ratios (6 and 9). Important flow features, such as the formation of different vortical structures and their characteristics owing to different values of the velocity ratio, are discussed. Some predicted results are compared with the experimental data reported in the literature. The predicted mean and turbulent flow properties are shown to be in good agreement with the experimental data.
基金The workis supported by a grant fromthe Hong Kong Research Grants Council (HKU7347/01E) Programfor NewCentury Excellent Talents in University (NCET-04-0494) the National Natural Science Foundation of China(Grant No.50479068)
文摘The mixing and merging characteristics of multiple tandem jets in crossflow are investigated by use of the Computational Fluid Dynamics (CFD) code FI,UENT. The realizable k - ε model is employed for turbulent elosure of the Reynolds-averaged Navier-Stokes equations. Numerical experiments are performed for 1-, 2- and 4-jet groups, tbr jet-tocrossflow velocity ratios of R = 4.2 ~ 16.3. The computed velocity and scalar concentration field are in good agreement with experiments using Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF), as well as previous work. The results show that the leading jet behavior is similar to a single free jet in crossflow, while all the downstream rear jets have less bent-over jet trajectories - suggesting a reduced ambient velocity for the rear jets. The concentration decay of the leading jet is greater than that of the rear jets. When normalized by appropriate crossflow momentum length scales, all jet trajectories follow a universal relation regardless of the sequential order of jet position and the nund)er of jets. Supported by the velocity and trajectory measurements, the averaged maximum effective crossflow velocity ratio is computed to be in the range of 0.39 to 0.47.
文摘The RNG k εturbulence model is adopted to investigate a turbulent round jet issuing into crossflow, with the Reynolds number at jet exit of Re=6000 and jet to crossflow velocity ratio of r=8. With the CFD code, FLUENT, the relations of dimensional analysis are successfully reproduced and the calculated coefficients agree well with the experimental measurements of Wong (1991) and Chu (1996). The investigations are then taken on the velocity, stream function and vorticity at the far field of the jet. It shows that at least within the covered range herein, the jet at the far field is self similar.
基金supported by the Science Center for Gas Turbine Project,China(No.P2022-B-II-020-001)the National Natural Science Foundation of China(No.52276123).
文摘For the design and optimization of advanced aero-engines,the prohibitively computational resources required for numerical simulations pose a significant challenge,due to the extensive exploration of design parameters across a vast design space.Surrogate modeling techniques offer a viable alternative for efficiently emulating numerical results within a notably compressed timeframe.This study introduces parametric Reduced-Order Models(ROMs)based on Convolutional Auto-Encoders(CAE),Fully Connected AutoEncoders(FCAE),and Proper Orthogonal Decomposition(POD)to fast emulate spatial distributions of physical variables for a supercritical jet into a supersonic crossflow under different operating conditions.To further accelerate the decision-making process,an optimization model is developed to enhance fuel-oxidizer mixing efficiency while minimizing total pressure loss.Results indicate that CAE-based ROMs exhibit superior prediction accuracy while FCAE-based ROMs show inferior predictive accuracy but minimal uncertainty.The latter may be ascribed to the markedly greater number of hyperparameters.POD-based ROMs underperform in regions of strong nonlinear flow dynamics,coupled with higher overall prediction uncertainties.Both AE-and POD-based ROMs achieve online predictions approximately 9 orders of magnitude faster than conventional simulations.The established optimization model enables the attainment of Pareto-optimal frontiers for spatial mixing deficiencies and total pressure recovery coefficient.