The additive design (AD) and additive manufacturing (AM) of jet engine parts will revolutionize the traditional aerospace industry. The unique characteristics of AM, such as gradient materials and micro-structures...The additive design (AD) and additive manufacturing (AM) of jet engine parts will revolutionize the traditional aerospace industry. The unique characteristics of AM, such as gradient materials and micro-structures, have opened up a new direction in jet engine design and manufacturing. Engineers have been liberated from many constraints associated with traditional methodologies and technologies. One of the most significant features of the AM process is that it can ensure the consistency of parts because it starts from point(s), continues to line(s) and layer(s), and ends with the competed part. Collaboration between design and manufacturing is the key to success in fields including aerodynamics, thermodynamics, structural integration, heat transfer, material development, and machining. Engineers must change the way they design a part, as they shift from the traditional method of "subtracting material" to the new method of "adding material" in order to manufacture a part. AD is not the same as designing for AM, A new method and new tools are required to assist with this new way of designing and manufacturing. This paper discusses in detail what is required in AD and AM, and how current problems can be solved.展开更多
The process of the gas jet from aircraft engines impacting a jet blast deflector is not only a complex fluid–solid coupling problem that is not easy to compute, but also a safety issue that seriously interferes with ...The process of the gas jet from aircraft engines impacting a jet blast deflector is not only a complex fluid–solid coupling problem that is not easy to compute, but also a safety issue that seriously interferes with flight deck envi?ronment. The computational fluid dynamics(CFD) method is used to simulate numerically the impact e ect of gas jet from aircraft engines on a jet blast deflector by using the Reynolds?averaged Navier?Stokes(RANS) equations and turbulence models. First of all, during the pre?processing of numerical computation, a sub?domains hybrid meshing scheme is adopted to reduce mesh number and improve mesh quality. Then, four di erent turbulence models includ?ing shear?stress transport(SST) k-w, standard k-w, standard k-ε and Reynolds stress model(RSM) are used to compare and verify the correctness of numerical methods for gas jet from a single aircraft engine. The predicted values are in good agreement with the experimental data, and the distribution and regularity of shock wave, velocity, pressure and temperature of a single aircraft engine are got. The results show that SST k?w turbulence model is more suitable for the numerical simulation of compressible viscous gas jet with high prediction accuracy. Finally, the impact e ect of gas jet from two aircraft engines on a jet blast deflector is analyzed based on the above numerical method, not only the flow parameters of gas jet and the interaction regularity between gas jet and the jet blast deflector are got, but also the thermal shock properties and dynamic impact characteristics of gas jet impacting the jet blast deflector are got. So the dangerous activity area of crew and equipments on the flight deck can be predicted qualitatively and quantitatively. The proposed research explores out a correct numerical method for the fluid–solid interaction during the impact process of supersonic gas jet, which provides an e ective technical support for design, thermal ablation and structural damage analysis of a new jet blast deflector.展开更多
文摘The additive design (AD) and additive manufacturing (AM) of jet engine parts will revolutionize the traditional aerospace industry. The unique characteristics of AM, such as gradient materials and micro-structures, have opened up a new direction in jet engine design and manufacturing. Engineers have been liberated from many constraints associated with traditional methodologies and technologies. One of the most significant features of the AM process is that it can ensure the consistency of parts because it starts from point(s), continues to line(s) and layer(s), and ends with the competed part. Collaboration between design and manufacturing is the key to success in fields including aerodynamics, thermodynamics, structural integration, heat transfer, material development, and machining. Engineers must change the way they design a part, as they shift from the traditional method of "subtracting material" to the new method of "adding material" in order to manufacture a part. AD is not the same as designing for AM, A new method and new tools are required to assist with this new way of designing and manufacturing. This paper discusses in detail what is required in AD and AM, and how current problems can be solved.
基金Supported by National Natural Science Foundation of China(Grant No.51505491)Shandong Provincial Natural Science Foundation of China(Grant No.ZR2014EEP019)
文摘The process of the gas jet from aircraft engines impacting a jet blast deflector is not only a complex fluid–solid coupling problem that is not easy to compute, but also a safety issue that seriously interferes with flight deck envi?ronment. The computational fluid dynamics(CFD) method is used to simulate numerically the impact e ect of gas jet from aircraft engines on a jet blast deflector by using the Reynolds?averaged Navier?Stokes(RANS) equations and turbulence models. First of all, during the pre?processing of numerical computation, a sub?domains hybrid meshing scheme is adopted to reduce mesh number and improve mesh quality. Then, four di erent turbulence models includ?ing shear?stress transport(SST) k-w, standard k-w, standard k-ε and Reynolds stress model(RSM) are used to compare and verify the correctness of numerical methods for gas jet from a single aircraft engine. The predicted values are in good agreement with the experimental data, and the distribution and regularity of shock wave, velocity, pressure and temperature of a single aircraft engine are got. The results show that SST k?w turbulence model is more suitable for the numerical simulation of compressible viscous gas jet with high prediction accuracy. Finally, the impact e ect of gas jet from two aircraft engines on a jet blast deflector is analyzed based on the above numerical method, not only the flow parameters of gas jet and the interaction regularity between gas jet and the jet blast deflector are got, but also the thermal shock properties and dynamic impact characteristics of gas jet impacting the jet blast deflector are got. So the dangerous activity area of crew and equipments on the flight deck can be predicted qualitatively and quantitatively. The proposed research explores out a correct numerical method for the fluid–solid interaction during the impact process of supersonic gas jet, which provides an e ective technical support for design, thermal ablation and structural damage analysis of a new jet blast deflector.