期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
GF6卫星红边波段对春季作物分类精度的影响 被引量:14
1
作者 王利军 郭燕 +3 位作者 王来刚 贺佳 张红利 刘婷 《河南农业科学》 北大核心 2020年第6期165-173,共9页
为探究高分六号(GF6)宽幅遥感影像红边波段在春季作物识别中的应用,以河南省杞县为研究区,通过分析2019年3月25日单时相影像及其光谱特征,利用随机森林算法完成4种不同红边波段方案下冬小麦、大蒜和其他作物(油菜、蔬菜等)的分类提取,... 为探究高分六号(GF6)宽幅遥感影像红边波段在春季作物识别中的应用,以河南省杞县为研究区,通过分析2019年3月25日单时相影像及其光谱特征,利用随机森林算法完成4种不同红边波段方案下冬小麦、大蒜和其他作物(油菜、蔬菜等)的分类提取,并基于地面采样数据实现不同方案分类精度评价、样本间可分性测度以及光谱反射率计算分析。结果表明,有红边波段参与下,较无红边波段参与时作物总体分类精度和不同作物可分性测度值均有所提高;单红边波段参与下,红边波段2作物总体分类精度较红边波段1提高了1.98个百分点;引入全部红边波段较无红边参与方案的作物总体分类精度由81.56%提高到86.19%,提高了4.63个百分点,Kappa系数由0.72提高到0.79,冬小麦-大蒜、冬小麦-其他作物、大蒜-其他作物的J-M(Jeffries-Matusita)可分性测度也分别增加了0.0856、0.0761和0.0251。研究表明,红边波段的引入不仅增加了作物间的可分性测度,降低了分类结果中作物误分、漏分情况,也在一定程度上降低了结果中的“椒盐现象”,为国产红边卫星数据在农业上的应用提供参考。 展开更多
关键词 高分六号 红边波段 春季作物 分类精度 随机森林 jeffries-matusita距离
下载PDF
一种基于特征选择的面向对象遥感影像分类方法 被引量:12
2
作者 王永吉 孟庆岩 +3 位作者 杨健 孙云晓 李鹏 邢武杰 《科学技术与工程》 北大核心 2016年第32期107-113,共7页
针对GF—1多空间分辨率遥感数据空间信息丰富,传统影像分类方法无法满足实际应用需要的问题,提出了一种基于特征选择的面向对象遥感影像分类方法——object-RJMC算法,即在影像分割及特征提取的基础上,运用Relief F算法和J-M(Jeffries-Ma... 针对GF—1多空间分辨率遥感数据空间信息丰富,传统影像分类方法无法满足实际应用需要的问题,提出了一种基于特征选择的面向对象遥感影像分类方法——object-RJMC算法,即在影像分割及特征提取的基础上,运用Relief F算法和J-M(Jeffries-Matusita)距离算法去除无关及冗余特征,筛选出适于各类别分类的特征,然后利用CART算法建立分类规则,完成分类过程。以GF-1号2 m、8 m和16 m空间分辨率的三组影像进行算法验证,并与object-CART和pixel-CART影像分类方法进行对比分析。实验结果显示object-RJMC算法的分类精度均高于object-CART和pixel-CART算法的分类精度;且对高空间分辨率的影像分类效果要优于对中低空间分辨率影像的分类效果。该算法减少了特征选择及规则建立的人工干预,克服了以像素为单位的分类算法中由于缺少空间邻域信息而产生孤立、离散、不连通分类结果的问题,可有效地提高GF-1遥感影像分类精度。 展开更多
关键词 面向对象 特征选择 RELIEFF算法 J-M( jeffries-matusita)距离 CART算法
下载PDF
入侵种互花米草的光谱分层分析方法 被引量:8
3
作者 艾金泉 陈文惠 +1 位作者 罗丽娟 章文龙 《测绘科学》 CSCD 北大核心 2015年第10期118-122,共5页
针对互花米草的爆发式增长对沿海滩涂生物多样性和生态稳定带来了巨大的生态威胁的问题,该文以闽江河口互花米草和其他3种湿地植物的室内叶片高光谱数据为例,探讨互花米草与其伴生植物是否具有光谱可分性。采用一种分层分析方法对实测... 针对互花米草的爆发式增长对沿海滩涂生物多样性和生态稳定带来了巨大的生态威胁的问题,该文以闽江河口互花米草和其他3种湿地植物的室内叶片高光谱数据为例,探讨互花米草与其伴生植物是否具有光谱可分性。采用一种分层分析方法对实测高光谱数据降维并选择出识别互花米草的最佳波段。首先,利用ANOVA对光谱数据降维,选择出互花米草与其他湿地植物光谱具有显著性差异的波段;其次,使用CART算法对ANOVA降维后具有显著差异的高光谱数据进一步降维,找到识别互花米草潜在的最佳波段;最后,利用J-M距离评估CART选择波段的可分性。结果表明:互花米草与其他3种湿地植物具有光谱可分性,其J-M距离均高于1.9;基于CART算法的入侵种互花米草的识别精度平均达到96.7%,高于传统方法的识别精度。该文成果将为航空或航天高光谱遥感监测互花米草入侵区提供参考。 展开更多
关键词 互花米草 降维 分类回归树 J-M距离 湿地植被
原文传递
基于优选特征及月合成Landsat数据湿地提取研究 被引量:5
4
作者 邢丽玮 牛振国 +2 位作者 王华斌 唐新明 王光辉 《地理与地理信息科学》 CSCD 北大核心 2018年第3期80-86,共7页
针对Landsat卫星完整时间序列数据难以获取导致的湿地提取准确性较低和湿地提取最优特征不明确的问题,该文提出一种基于优选特征和月合成时间序列Landsat数据提取湿地的方法。通过月合成方法,利用Landsat7ETM+和Landsat8OLI数据构建Land... 针对Landsat卫星完整时间序列数据难以获取导致的湿地提取准确性较低和湿地提取最优特征不明确的问题,该文提出一种基于优选特征和月合成时间序列Landsat数据提取湿地的方法。通过月合成方法,利用Landsat7ETM+和Landsat8OLI数据构建Landsat 30m地表反射率、NDVI、NDWI和缨帽变换湿度分量的时间序列;利用随机森林算法和扩展的Jeffries-Matusita距离(JBh)优选对湿地提取贡献较大的特征,并基于优选特征提取湿地。结果显示:1)月合成方法有效地改善了条带和云覆盖造成的Landsat单景影像数据缺失问题;2)5月NDVI和6、8月NDWI以及5月TC-Wetness是区分永久性草本沼泽、水稻田、草地和旱地的最优特征;3)基于优选特征的湿地分类结果总体精度达到0.91,Kappa系数为0.89。特征优选减少了数据冗余,提高了运算效率,为提高湿地分类精度提供了理论基础。 展开更多
关键词 优选特征 Landsat时间序列数据 随机森林 JM距离 湿地分类
下载PDF
基于特征距离的多类SVM分类方法研究 被引量:3
5
作者 赵展 夏旺 闫利 《地理空间信息》 2017年第11期84-87,共4页
提出了一种基于特征分离性测度的面向对象分类方法。首先利用区域增长分割影像获得影像对象,并计算光谱、纹理、形状等多种分类特征,然后在构建多类SVM分类器过程中,对于任意两个分类类别对,利用Jeffries-Matusita距离选择最合适的特征... 提出了一种基于特征分离性测度的面向对象分类方法。首先利用区域增长分割影像获得影像对象,并计算光谱、纹理、形状等多种分类特征,然后在构建多类SVM分类器过程中,对于任意两个分类类别对,利用Jeffries-Matusita距离选择最合适的特征。实验证明,相比于原始方法,基于Jeffries-Matusita距离的多类分类器能够有效减少建筑物、道路等复杂地物的误分现象,提高分类的总体精度和Kappa系数。 展开更多
关键词 面向对象影像分析 SVM jeffries-matusita距离
下载PDF
Multi-Class Support Vector Machine Classifier Based on Jeffries-Matusita Distance and Directed Acyclic Graph 被引量:1
6
作者 Miao Zhang Zhen-Zhou Lai +1 位作者 Dan Li Yi Shen 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第5期113-118,共6页
Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise... Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method. 展开更多
关键词 multi-class classification support vector machine directed acyclic graph jeffries-matusitadistance hyperspcctral data
下载PDF
一种面向对象的像元级遥感图像分类方法 被引量:14
7
作者 李小江 孟庆岩 +3 位作者 王春梅 刘苗 郑利娟 王珂 《地球信息科学学报》 CSCD 北大核心 2013年第5期744-751,共8页
本文提出一种面向对象的像元级分类方法(混合模型),并将其与单纯的以像元和面向对象的两种方法同时应用于分辨率分别为30m和0.5m的环境星CCD数据和航空影像进行对比分析。分类结果中不同地物类别之间光谱可分性的大小,很大程度上可反映... 本文提出一种面向对象的像元级分类方法(混合模型),并将其与单纯的以像元和面向对象的两种方法同时应用于分辨率分别为30m和0.5m的环境星CCD数据和航空影像进行对比分析。分类结果中不同地物类别之间光谱可分性的大小,很大程度上可反映分类结果的可靠性。若地物类型之间的光谱差异大,说明分类方法能将光谱差异大的地物很好地划分,显示出较可靠的分类结果;相反,如果分类结果中地物类型光谱差异小,则反映分类方法不够可靠。鉴此,本文通过计算分类结果中不同类别所对应的原始遥感影像像元之间的J-M(Jeffries-Matusita Distance)距离来度量分类结果中地物之间的光谱可分性,并用J-M距离比较分析了3种图像分类方法对2种不同分辨率影像的分类结果中各个类别之间的光谱可分性的变化。分析结果表明,混合模型不但能够得到较连续的分类结果,同时能够保持分类结果中类别之间的可分性。本文对分类结果进行了精度验证,结果发现混合模型的分类精度较其他2种方法要高。2种不同分辨率的遥感影像分析结果得到相同的结论,表明该模型适用于中分辨率和高分辨率影像。 展开更多
关键词 地物光谱可分性 多种分辨率 面向对象 混合模型 J-M fjeffries-Mamsita)距离
原文传递
基于概率距离的高分辨率遥感影像分割结果的优化方法及其应用研究
8
作者 王志成 高志强 +2 位作者 王德 宁吉才 尚伟涛 《测绘与空间地理信息》 2023年第6期12-15,20,共5页
不同于传统的通过选择合适的尺度参数来优化分割结果的方法,本文从统计学的角度,提出了一种基于概率距离的高分辨率遥感影像分割结果优化方法,并以Jeffries Matusita距离为例,介绍了利用该方法优化分割结果的流程。该方法通过为影像中... 不同于传统的通过选择合适的尺度参数来优化分割结果的方法,本文从统计学的角度,提出了一种基于概率距离的高分辨率遥感影像分割结果优化方法,并以Jeffries Matusita距离为例,介绍了利用该方法优化分割结果的流程。该方法通过为影像中的地物构建最优影像对象达到优化分割结果的目的。使用无人机影像对本文提出的优化方法进行了测试,测试结果表明,本文所提出的分割结果优化方法具有较好的效果,优化后的分类精度得到明显提高。 展开更多
关键词 高分辨率遥感影像 影像分割 概率距离 jeffries matusita距离 优化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部