Non-self-adjoint dynamical systems, e.g., nonholonomic systems, can admit an almost Poisson structure, which is formulated by a kind of Poisson bracket satisfying the usual properties except for the Jacobi identity. A...Non-self-adjoint dynamical systems, e.g., nonholonomic systems, can admit an almost Poisson structure, which is formulated by a kind of Poisson bracket satisfying the usual properties except for the Jacobi identity. A general theory of the almost Poisson structure is investigated based on a decompo- sition of the bracket into a sum of a Poisson one and an almost Poisson one. The corresponding rela- tion between Poisson structure and symplectic structure is proved, making use of Jacobiizer and symplecticizer. Based on analysis of pseudo-symplectic structure of constraint submanifold of Chaplygin’s nonholonomic systems, an almost Poisson bracket for the systems is constructed and decomposed into a sum of a canonical Poisson one and an almost Poisson one. Similarly, an almost Poisson structure, which can be decomposed into a sum of canonical one and an almost "Lie-Poisson" one, is also constructed on an affine space with torsion whose autoparallels are utilized to describe the free motion of some non-self-adjoint systems. The decomposition of the almost Poisson bracket di- rectly leads to a decomposition of a dynamical vector field into a sum of usual Hamiltionian vector field and an almost Hamiltonian one, which is useful to simplifying the integration of vector fields.展开更多
In this paper, we derive the bilinear form for a variable-coefficient Kadomtsev Petviashvili-typed equation. Based on the bilinear form, we obtain the Wronskian determinant solution, which is proved to be indeed an ex...In this paper, we derive the bilinear form for a variable-coefficient Kadomtsev Petviashvili-typed equation. Based on the bilinear form, we obtain the Wronskian determinant solution, which is proved to be indeed an exact solution of this equation through the Wronskian technique. In addition, we testify that this equation can be reduced to a Jacobi identity by considering its solution as a Grammian determinant by means of Pfaffian derivative formulae.展开更多
This paper constructs an almost-Poisson structure for the non-self-adjoint dynamical systems, which can be decomposed into a sum of a Poisson bracket and the other almost-Poisson bracket. The necessary and sufficient ...This paper constructs an almost-Poisson structure for the non-self-adjoint dynamical systems, which can be decomposed into a sum of a Poisson bracket and the other almost-Poisson bracket. The necessary and sufficient condition for the decomposition of the almost-Poisson bracket to be two Poisson ones is obtained. As an application, the almost- Poisson structure for generalised Chaplygin's systems is discussed in the framework of the decomposition theory. It proves that the almost-Poisson bracket for the systems can be decomposed into the sum of a canonical Poisson bracket and another two noneanonical Poisson brackets in some special cases, which is useful for integrating the equations of motion.展开更多
Applying an addition formula of Liu(2007),we deduce certain Jacobi theta function identities.From these results we confirm several q-trigonometric identities con.jectured by Gosper(2001).Another conjectured identity o...Applying an addition formula of Liu(2007),we deduce certain Jacobi theta function identities.From these results we confirm several q-trigonometric identities con.jectured by Gosper(2001).Another conjectured identity on the constant Πq is also settled.展开更多
Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting proper...Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting properties. It leads to an alternative definition of the Ultraspherical polynomials by a fixed integral operator in application to powers of the variable u in an analogous way as it is possible for Hermite polynomials. From this follows a generating function which is apparently known only for the Legendre and Chebyshev polynomials as their special case. Furthermore, we show that the Ultraspherical polynomials form a realization of the SU(1,1) Lie algebra with lowering and raising operators which we explicitly determine. By reordering of multiplication and differentiation operators we derive new operator identities for the whole set of Jacobi polynomials which may be applied to arbitrary functions and provide then function identities. In this way we derive a new “convolution identity” for Jacobi polynomials and compare it with a known convolution identity of different structure for Gegenbauer polynomials. In short form we establish the connection of Jacobi polynomials and their related orthonormalized functions to the eigensolution of the Schrödinger equation to Pöschl-Teller potentials.展开更多
q-Deformations of 3-Lie algebras and representations of q-3-Lie algebras are discussed. A q-3-Lie algebra (A, [, ,]q, [, ,]'q, Ja), where q ∈ F and q ≠ 0, is a vector space A over a field F with 3-cry linear mult...q-Deformations of 3-Lie algebras and representations of q-3-Lie algebras are discussed. A q-3-Lie algebra (A, [, ,]q, [, ,]'q, Ja), where q ∈ F and q ≠ 0, is a vector space A over a field F with 3-cry linear multiplications [,, ]q and [,, ]'q from A 3 to A, and a map Jq : A 5→ F satisfying the q-Jacobi identity Jq(x1, x2, x3, x4, x5)[x1, x2, [x3, x4, x5]q]'q = Jq(x4, x5, x1, x2, x3)[x4, x5, [x1, x2, x3]q]'q for all x1 ∈ A. If the multiplications satisfy that [,,]q = [,,]'q and [,,]q is skew-symmetry, then (A, [,,]q, Jq) is called a type (I)-q-3- Lie algebra. From q-Lie algebras, group algebras and commutative associative algebras, q-3-Lie algebras and type (I)-q-3-Lie algebras are constructed. Also, the non-trivial one- dimensional central extension of q-3-Lie algebras is investigated, and new q-3-Lie algebras (DerqC[x,x-1], [, ,]q, [, ,]'q, Jq), and (Derδq C[x,x-1], [, ,]q, [,,]'q, Jq) are obtained.展开更多
In this paper we establish two theta function identities with four parameters by the theory of theta functions. Using these identities we introduce common generalizations of Hirschhorn-Garvan-Borwein cubic theta funct...In this paper we establish two theta function identities with four parameters by the theory of theta functions. Using these identities we introduce common generalizations of Hirschhorn-Garvan-Borwein cubic theta functions, and also re-derive the quintuple product identity, one of Ramanujan's identities, Winquist's identity and many other interesting identities.展开更多
A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows ...A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows to reduce powers and smooth functions of them to superpositions of the first N-1 powers of the considered operator in N-dimensional case. The method leads in two-dimensional case first to the recurrence relations for Chebyshev polynomials and due to initial conditions to the application of Chebyshev polynomials of second kind Un(x). Furthermore, a new general class of Generating functions for Chebyshev polynomials of first and second kind Un(x) comprising the known Generating function as special cases is constructed by means of a derived identity for operator functions f(A) of a general two-dimensional operator A. The basic results are Formulas (9.5) and (9.6) which are then specialized for different examples of functions f(x). The generalization of the theory for three-dimensional operators is started to attack and a partial problem connected with the eigenvalue problem and the Hamilton-Cayley identity is solved in an Appendix. A physical application of Chebyshev polynomials to a problem of relativistic kinematics of a uniformly accelerated system is solved. All operator calculations are made in coordinate-invariant form.展开更多
The importance of basic hypergeometric series has been widely recognized. For non specialists, it is necessary to have a quick introduction to this classical but flourishing subject. An effort along this direction wil...The importance of basic hypergeometric series has been widely recognized. For non specialists, it is necessary to have a quick introduction to this classical but flourishing subject. An effort along this direction will be made in the present article.展开更多
In this paper, iterative or successive approximation methods for the Hamilton-Jacobi-Bellman-lsaacs equations (HJBIEs) arising in both deterministic and stochastic optimal control for affine nonlinear systems are de...In this paper, iterative or successive approximation methods for the Hamilton-Jacobi-Bellman-lsaacs equations (HJBIEs) arising in both deterministic and stochastic optimal control for affine nonlinear systems are developed. Convergence of the methods are established under fairly mild assumptions, and examples are solved to demonstrate the effectiveness of the methods. However, the results presented in the paper are preliminary, and do not yet imply in anyway that the solutions computed will be stabilizing. More improvements and experimentation will be required before a satisfactory algorithm is developed.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10872084, 10472040)the Outstanding Young Talents Training Fund of Liaoning Province of China (Grant No. 3040005)the Research Program of Higher Educa-tion of Liaoning Province of China (Grant No. 2008S098)
文摘Non-self-adjoint dynamical systems, e.g., nonholonomic systems, can admit an almost Poisson structure, which is formulated by a kind of Poisson bracket satisfying the usual properties except for the Jacobi identity. A general theory of the almost Poisson structure is investigated based on a decompo- sition of the bracket into a sum of a Poisson one and an almost Poisson one. The corresponding rela- tion between Poisson structure and symplectic structure is proved, making use of Jacobiizer and symplecticizer. Based on analysis of pseudo-symplectic structure of constraint submanifold of Chaplygin’s nonholonomic systems, an almost Poisson bracket for the systems is constructed and decomposed into a sum of a canonical Poisson one and an almost Poisson one. Similarly, an almost Poisson structure, which can be decomposed into a sum of canonical one and an almost "Lie-Poisson" one, is also constructed on an affine space with torsion whose autoparallels are utilized to describe the free motion of some non-self-adjoint systems. The decomposition of the almost Poisson bracket di- rectly leads to a decomposition of a dynamical vector field into a sum of usual Hamiltionian vector field and an almost Hamiltonian one, which is useful to simplifying the integration of vector fields.
基金The project supported by the Key Project of the Ministry of Education under Grant No.106033the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060006024+2 种基金National Natural Science Foundation of China under Grant Nos.60372095 and 60772023the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.SKLSDE07-001Beijing University of Aeronautics and Astronautics,and the National Basic Research Program of China(973 Program)under Grant No.2005CB321901
文摘In this paper, we derive the bilinear form for a variable-coefficient Kadomtsev Petviashvili-typed equation. Based on the bilinear form, we obtain the Wronskian determinant solution, which is proved to be indeed an exact solution of this equation through the Wronskian technique. In addition, we testify that this equation can be reduced to a Jacobi identity by considering its solution as a Grammian determinant by means of Pfaffian derivative formulae.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10872084 and 10472040)the Outstanding Young Talents Training Fund of Liaoning Province,China (Grant No. 3040005)the Research Program of Higher Education of Liaoning Province,China (Grant No. 2008S098)
文摘This paper constructs an almost-Poisson structure for the non-self-adjoint dynamical systems, which can be decomposed into a sum of a Poisson bracket and the other almost-Poisson bracket. The necessary and sufficient condition for the decomposition of the almost-Poisson bracket to be two Poisson ones is obtained. As an application, the almost- Poisson structure for generalised Chaplygin's systems is discussed in the framework of the decomposition theory. It proves that the almost-Poisson bracket for the systems can be decomposed into the sum of a canonical Poisson bracket and another two noneanonical Poisson brackets in some special cases, which is useful for integrating the equations of motion.
基金supported by National Natural Science Foundation of China(Grant No.11801451).supported by National Natural Science Foundation of China(Grant No.11371184)the Natural Science Foundation of Henan Province(Grant Nos.162300410086,2016B259 and 172102410069)。
文摘Applying an addition formula of Liu(2007),we deduce certain Jacobi theta function identities.From these results we confirm several q-trigonometric identities con.jectured by Gosper(2001).Another conjectured identity on the constant Πq is also settled.
文摘Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting properties. It leads to an alternative definition of the Ultraspherical polynomials by a fixed integral operator in application to powers of the variable u in an analogous way as it is possible for Hermite polynomials. From this follows a generating function which is apparently known only for the Legendre and Chebyshev polynomials as their special case. Furthermore, we show that the Ultraspherical polynomials form a realization of the SU(1,1) Lie algebra with lowering and raising operators which we explicitly determine. By reordering of multiplication and differentiation operators we derive new operator identities for the whole set of Jacobi polynomials which may be applied to arbitrary functions and provide then function identities. In this way we derive a new “convolution identity” for Jacobi polynomials and compare it with a known convolution identity of different structure for Gegenbauer polynomials. In short form we establish the connection of Jacobi polynomials and their related orthonormalized functions to the eigensolution of the Schrödinger equation to Pöschl-Teller potentials.
文摘q-Deformations of 3-Lie algebras and representations of q-3-Lie algebras are discussed. A q-3-Lie algebra (A, [, ,]q, [, ,]'q, Ja), where q ∈ F and q ≠ 0, is a vector space A over a field F with 3-cry linear multiplications [,, ]q and [,, ]'q from A 3 to A, and a map Jq : A 5→ F satisfying the q-Jacobi identity Jq(x1, x2, x3, x4, x5)[x1, x2, [x3, x4, x5]q]'q = Jq(x4, x5, x1, x2, x3)[x4, x5, [x1, x2, x3]q]'q for all x1 ∈ A. If the multiplications satisfy that [,,]q = [,,]'q and [,,]q is skew-symmetry, then (A, [,,]q, Jq) is called a type (I)-q-3- Lie algebra. From q-Lie algebras, group algebras and commutative associative algebras, q-3-Lie algebras and type (I)-q-3-Lie algebras are constructed. Also, the non-trivial one- dimensional central extension of q-3-Lie algebras is investigated, and new q-3-Lie algebras (DerqC[x,x-1], [, ,]q, [, ,]'q, Jq), and (Derδq C[x,x-1], [, ,]q, [,,]'q, Jq) are obtained.
基金Supported by Innovation Program of Shanghai Municipal Education Commission and PCSIRT
文摘In this paper we establish two theta function identities with four parameters by the theory of theta functions. Using these identities we introduce common generalizations of Hirschhorn-Garvan-Borwein cubic theta functions, and also re-derive the quintuple product identity, one of Ramanujan's identities, Winquist's identity and many other interesting identities.
文摘A new application of Chebyshev polynomials of second kind Un(x) to functions of two-dimensional operators is derived and discussed. It is related to the Hamilton-Cayley identity for operators or matrices which allows to reduce powers and smooth functions of them to superpositions of the first N-1 powers of the considered operator in N-dimensional case. The method leads in two-dimensional case first to the recurrence relations for Chebyshev polynomials and due to initial conditions to the application of Chebyshev polynomials of second kind Un(x). Furthermore, a new general class of Generating functions for Chebyshev polynomials of first and second kind Un(x) comprising the known Generating function as special cases is constructed by means of a derived identity for operator functions f(A) of a general two-dimensional operator A. The basic results are Formulas (9.5) and (9.6) which are then specialized for different examples of functions f(x). The generalization of the theory for three-dimensional operators is started to attack and a partial problem connected with the eigenvalue problem and the Hamilton-Cayley identity is solved in an Appendix. A physical application of Chebyshev polynomials to a problem of relativistic kinematics of a uniformly accelerated system is solved. All operator calculations are made in coordinate-invariant form.
文摘The importance of basic hypergeometric series has been widely recognized. For non specialists, it is necessary to have a quick introduction to this classical but flourishing subject. An effort along this direction will be made in the present article.
文摘In this paper, iterative or successive approximation methods for the Hamilton-Jacobi-Bellman-lsaacs equations (HJBIEs) arising in both deterministic and stochastic optimal control for affine nonlinear systems are developed. Convergence of the methods are established under fairly mild assumptions, and examples are solved to demonstrate the effectiveness of the methods. However, the results presented in the paper are preliminary, and do not yet imply in anyway that the solutions computed will be stabilizing. More improvements and experimentation will be required before a satisfactory algorithm is developed.