To seek new infinite sequence soliton-like exact solutions to nonlinear evolution equations (NEE(s)), by developing two characteristics of construction and mechanization on auxiliary equation method, the second ki...To seek new infinite sequence soliton-like exact solutions to nonlinear evolution equations (NEE(s)), by developing two characteristics of construction and mechanization on auxiliary equation method, the second kind of elliptie equation is highly studied and new type solutions and Backlund transformation are obtained. Then (2+ l )-dimensional breaking soliton equation is chosen as an example and its infinite sequence soliton-like exact solutions are constructed with the help of symbolic computation system Mathematica, which include infinite sequence smooth soliton-like solutions of Jacobi elliptic type, infinite sequence compact soliton solutions of Jacobi elliptic type and infinite sequence peak soliton solutions of exponential function type and triangular function type.展开更多
From the nonlinear sine-Gordon equation, new transformations are obtained in this paper, which are applied to propose a new approach to construct exact periodic solutions to nonlinear wave equations. It is shown that ...From the nonlinear sine-Gordon equation, new transformations are obtained in this paper, which are applied to propose a new approach to construct exact periodic solutions to nonlinear wave equations. It is shown that more new periodic solutions can be obtained by this new approach, and more shock wave solutions or solitary wave solutions can be got under their limit conditions.展开更多
Presents a study which investigated some Jacobi approximations which are used for numerical solutions of differential equations on the half line. Application of the approximations to problems on unbounded domains; Alg...Presents a study which investigated some Jacobi approximations which are used for numerical solutions of differential equations on the half line. Application of the approximations to problems on unbounded domains; Algorithm to prove the stability and convergence of the approximations.展开更多
The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wav...The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.展开更多
By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of ...By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.展开更多
In this article, we consider analytical solutions of the time fractional derivative Gardner equation by using the new version of F-expansion method. With this proposed method multiple Jacobi elliptic functions are sit...In this article, we consider analytical solutions of the time fractional derivative Gardner equation by using the new version of F-expansion method. With this proposed method multiple Jacobi elliptic functions are situated in the solution function. As a result, various exact analytical solutions consisting of single and combined Jacobi elliptic functions solutions are obtained.展开更多
Let T1,n be an n x n unreduced symmetric tridiagonal matrix with eigenvaluesand is an (n - 1) x (n - 1) submatrix by deleting the kth row and kth column, k = 1, 2,be the eigenvalues of T1,k andbe the eigenvalues of Tk...Let T1,n be an n x n unreduced symmetric tridiagonal matrix with eigenvaluesand is an (n - 1) x (n - 1) submatrix by deleting the kth row and kth column, k = 1, 2,be the eigenvalues of T1,k andbe the eigenvalues of Tk+1,nA new inverse eigenvalues problem has put forward as follows: How do we construct anunreduced symmetric tridiagonal matrix T1,n, if we only know the spectral data: theeigenvalues of T1,n, the eigenvalues of Ti,k-1 and the eigenvalues of Tk+1,n?Namely if we only know the data: A1, A2, An,how do we find the matrix T1,n? A necessary and sufficient condition and an algorithm ofsolving such problem, are given in this paper.展开更多
In this paper, a non-isotropic Jacobi pseudospectral method is proposed and its appli- cations are considered. Some results on the multi-dimensional Jacobi-Gauss type interpolation and the related Bernstein-Jackson ty...In this paper, a non-isotropic Jacobi pseudospectral method is proposed and its appli- cations are considered. Some results on the multi-dimensional Jacobi-Gauss type interpolation and the related Bernstein-Jackson type inequalities are established, which play an important role in pseudospectral method. The pseudospectral method is applied to a twodimensional singular problem and a problem on axisymmetric domain. The convergence of proposed schemes is established. Numerical results demonstrate the efficiency of the proposed method.展开更多
This work is to analyze a spectral Jacobi-collocation approximation for Volterra integral equations with singular kernel p(t, s) = (t - s)^-μ. In an earlier work of Y. Chen and T. Tang [J. Comput. Appl. Math., 20...This work is to analyze a spectral Jacobi-collocation approximation for Volterra integral equations with singular kernel p(t, s) = (t - s)^-μ. In an earlier work of Y. Chen and T. Tang [J. Comput. Appl. Math., 2009, 233:938 950], the error analysis for this approach is carried out for 0 〈 μ 〈 1/2 under the assumption that the underlying solution is smooth. It is noted that there is a technical problem to extend the result to the case of Abel-type, i.e., μ = 1/2. In this work, we will not only extend the convergence analysis by Chen and Tang to the Abel-ype but also establish the error estimates under a more general regularity assumption on the exact solution.展开更多
The equation of motion for a large-deflection beam in the Lagrangian description are derived using the coupling of flexural deformation and midplane stretching as a key source of nonlinearity and taking into account t...The equation of motion for a large-deflection beam in the Lagrangian description are derived using the coupling of flexural deformation and midplane stretching as a key source of nonlinearity and taking into account the transverse, axial and rotary inertia effects. Assuming a traveling wave solution, the nonlinear partial differential equations are then transformed into ordinary differential equations. Qualitative analysis indicates that the system can have either a homoclinic orbit or a heteroclinic orbit, depending on whether the rotary inertia effect is taken into account. Furthermore, exact periodic solutions of the nonlinear wave equations are obtained by means of the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function m→1 in the degenerate case, either a solitary wave solution or a shock wave solution can be obtained.展开更多
Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct dou...Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.展开更多
The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the applicat...The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.展开更多
This paper focuses on studying the Poisson theory and the integration method of a Birkhoffian system in the event space. The Birkhoff's equations in the event space are given. The Poisson theory of the Birkhoffian sy...This paper focuses on studying the Poisson theory and the integration method of a Birkhoffian system in the event space. The Birkhoff's equations in the event space are given. The Poisson theory of the Birkhoffian system in the event space is established. The definition of the Jacobi last multiplier of the system is given, and the relation between the Jacobi last multiplier and the first integrals of the system is discussed. The researches show that for a Birkhoffian system in the event space, whose configuration is determined by (2n + 1) Birkhoff's variables, the solution of the system can be found by the Jacobi last multiplier if 2n first integrals are known. An example is given to illustrate the application of the results.展开更多
A systematic methodology for solving the inverse dynamics of the Delta robot is presented.First,the inverse kinematics is solved based on the vector method.A new form of the Jacobi matrix formulized by the vectors is ...A systematic methodology for solving the inverse dynamics of the Delta robot is presented.First,the inverse kinematics is solved based on the vector method.A new form of the Jacobi matrix formulized by the vectors is obtained so the three types kinematics singularities namely inverse, direct and combined types, can be identified with the physical meaning.Then based on the principle of virtual work, a methodology for driving the dynamical equations of motion is developed.Meanwhile the whole actuating torques, the torques caused by the gravity, the velocity and the acceleration are computed respectively in the numerical example. Results show that torque caused by the acceleration term is much bigger than the other two terms.This approach leads to efficient algorithms since the constraint forces and moments of the robot system have been eliminated from the equations of motion and there is no differential equation for the whole procedure when the principle of virtual work is applied to solving the inverse dynamical problem.展开更多
基金Supported by the Natural Natural Science Foundation of China under Grant No.10461006the Science Research Foundation of Institution of Higher Education of Inner Mongolia Autonomous Region,China under Grant No.NJZZ07031the Natural Science Foundation of Inner Mongolia Autonomous Region,China under Grant No.2010MS0111
文摘To seek new infinite sequence soliton-like exact solutions to nonlinear evolution equations (NEE(s)), by developing two characteristics of construction and mechanization on auxiliary equation method, the second kind of elliptie equation is highly studied and new type solutions and Backlund transformation are obtained. Then (2+ l )-dimensional breaking soliton equation is chosen as an example and its infinite sequence soliton-like exact solutions are constructed with the help of symbolic computation system Mathematica, which include infinite sequence smooth soliton-like solutions of Jacobi elliptic type, infinite sequence compact soliton solutions of Jacobi elliptic type and infinite sequence peak soliton solutions of exponential function type and triangular function type.
文摘From the nonlinear sine-Gordon equation, new transformations are obtained in this paper, which are applied to propose a new approach to construct exact periodic solutions to nonlinear wave equations. It is shown that more new periodic solutions can be obtained by this new approach, and more shock wave solutions or solitary wave solutions can be got under their limit conditions.
文摘Presents a study which investigated some Jacobi approximations which are used for numerical solutions of differential equations on the half line. Application of the approximations to problems on unbounded domains; Algorithm to prove the stability and convergence of the approximations.
文摘The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.
基金Project supported by the National Natural Science Foundation of China(Grant No 10461006), the High Education Science Research Program(Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University(Grant No QN005023).
文摘By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.
文摘In this article, we consider analytical solutions of the time fractional derivative Gardner equation by using the new version of F-expansion method. With this proposed method multiple Jacobi elliptic functions are situated in the solution function. As a result, various exact analytical solutions consisting of single and combined Jacobi elliptic functions solutions are obtained.
基金Project 19771020 supported by National Science Foundation of China.
文摘Let T1,n be an n x n unreduced symmetric tridiagonal matrix with eigenvaluesand is an (n - 1) x (n - 1) submatrix by deleting the kth row and kth column, k = 1, 2,be the eigenvalues of T1,k andbe the eigenvalues of Tk+1,nA new inverse eigenvalues problem has put forward as follows: How do we construct anunreduced symmetric tridiagonal matrix T1,n, if we only know the spectral data: theeigenvalues of T1,n, the eigenvalues of Ti,k-1 and the eigenvalues of Tk+1,n?Namely if we only know the data: A1, A2, An,how do we find the matrix T1,n? A necessary and sufficient condition and an algorithm ofsolving such problem, are given in this paper.
基金Science and Technology Commission of Shanghai Municipality Grant No.75105118the Shanghai Leading Academic Discipline Project No.T0401the Funds for E-institutes of Shanghai Universities No.E03004
文摘In this paper, a non-isotropic Jacobi pseudospectral method is proposed and its appli- cations are considered. Some results on the multi-dimensional Jacobi-Gauss type interpolation and the related Bernstein-Jackson type inequalities are established, which play an important role in pseudospectral method. The pseudospectral method is applied to a twodimensional singular problem and a problem on axisymmetric domain. The convergence of proposed schemes is established. Numerical results demonstrate the efficiency of the proposed method.
文摘This work is to analyze a spectral Jacobi-collocation approximation for Volterra integral equations with singular kernel p(t, s) = (t - s)^-μ. In an earlier work of Y. Chen and T. Tang [J. Comput. Appl. Math., 2009, 233:938 950], the error analysis for this approach is carried out for 0 〈 μ 〈 1/2 under the assumption that the underlying solution is smooth. It is noted that there is a technical problem to extend the result to the case of Abel-type, i.e., μ = 1/2. In this work, we will not only extend the convergence analysis by Chen and Tang to the Abel-ype but also establish the error estimates under a more general regularity assumption on the exact solution.
基金supported by the National Natural Science Foundation of China(Nos.10772129 and 10702047).
文摘The equation of motion for a large-deflection beam in the Lagrangian description are derived using the coupling of flexural deformation and midplane stretching as a key source of nonlinearity and taking into account the transverse, axial and rotary inertia effects. Assuming a traveling wave solution, the nonlinear partial differential equations are then transformed into ordinary differential equations. Qualitative analysis indicates that the system can have either a homoclinic orbit or a heteroclinic orbit, depending on whether the rotary inertia effect is taken into account. Furthermore, exact periodic solutions of the nonlinear wave equations are obtained by means of the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function m→1 in the degenerate case, either a solitary wave solution or a shock wave solution can be obtained.
文摘Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.
基金the State Key Programme of Basic Research of China under,高等学校博士学科点专项科研项目
文摘The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.
基金Project supported by the National Natural Science Foundation of China(Grant No.10972151)
文摘This paper focuses on studying the Poisson theory and the integration method of a Birkhoffian system in the event space. The Birkhoff's equations in the event space are given. The Poisson theory of the Birkhoffian system in the event space is established. The definition of the Jacobi last multiplier of the system is given, and the relation between the Jacobi last multiplier and the first integrals of the system is discussed. The researches show that for a Birkhoffian system in the event space, whose configuration is determined by (2n + 1) Birkhoff's variables, the solution of the system can be found by the Jacobi last multiplier if 2n first integrals are known. An example is given to illustrate the application of the results.
基金Supported by National Natural Science Foundation of China (No. 50375106) andKey Laboratory of Intelligent Manufacturing at Shantou University Grant (No. Imstu-2002-11).
文摘A systematic methodology for solving the inverse dynamics of the Delta robot is presented.First,the inverse kinematics is solved based on the vector method.A new form of the Jacobi matrix formulized by the vectors is obtained so the three types kinematics singularities namely inverse, direct and combined types, can be identified with the physical meaning.Then based on the principle of virtual work, a methodology for driving the dynamical equations of motion is developed.Meanwhile the whole actuating torques, the torques caused by the gravity, the velocity and the acceleration are computed respectively in the numerical example. Results show that torque caused by the acceleration term is much bigger than the other two terms.This approach leads to efficient algorithms since the constraint forces and moments of the robot system have been eliminated from the equations of motion and there is no differential equation for the whole procedure when the principle of virtual work is applied to solving the inverse dynamical problem.