In this paper, a new kind of simple-encoding irregular systematic LDPC codes suitable for one-relay coded cooperation is designed, where the proposed joint iterative decoding is effectively performed in the destinatio...In this paper, a new kind of simple-encoding irregular systematic LDPC codes suitable for one-relay coded cooperation is designed, where the proposed joint iterative decoding is effectively performed in the destination which is in accordance with the corresponding joint Tanner graph characterizing two different component LDPC codes used by the source and relay in ideal and non-ideal relay cooperations. The theoretical analysis and simulations show that the coded cooperation scheme obviously outperforms the coded non-cooperation one under the same code rate and decoding complex. The significant performance improvement can be virtually credited to the additional mutual exchange of the extrinsic information resulted by the LDPC code employed by the source and its counterpart used by the relay in both ideal and non-ideal cooperations.展开更多
An improved list sphere decoder (ILSD) is proposed based on the conventional list sphere decoder (LSD) and the reduced- complexity maximum likelihood sphere-decoding algorithm. Unlike the conventional LSD with fix...An improved list sphere decoder (ILSD) is proposed based on the conventional list sphere decoder (LSD) and the reduced- complexity maximum likelihood sphere-decoding algorithm. Unlike the conventional LSD with fixed initial radius, the ILSD adopts an adaptive radius to accelerate the list cdnstruction. Characterized by low-complexity and radius-insensitivity, the proposed algorithm makes iterative joint detection and decoding more realizable in multiple-antenna systems. Simulation results show that computational savings of ILSD over LSD are more apparent with more transmit antennas or larger constellations, and with no performance degradation. Because the complexity of the ILSD algorithm almost keeps invariant with the increasing of initial radius, the BER performance can be improved by selecting a sufficiently large radius.展开更多
Aimed at the conventional serial communication system fails when the channel was frequency-selective,long delay and multi-paths effect,resulting in inter-symbol-interference( ISI),an iterative system for underwater ac...Aimed at the conventional serial communication system fails when the channel was frequency-selective,long delay and multi-paths effect,resulting in inter-symbol-interference( ISI),an iterative system for underwater acoustic communication( UWAC) was proposed,which employed iterative differential detection and spread spectrum technique. The proposed scheme adopts π /4-DQPSK soft demodulation to overcome the difficulty of phase ambiguity. For suppression of ISI in UWAC,joint demodulation and decoding iteration was used. The communication scheme has the characteristic of long communication range at low SNR,and the maximum range is up to 100 km. The theoretic analysis and simulation results show that the proposed scheme outperforms traditional serial one. When SNR is- 6 dB,after four joint iterations,compared with serial scheme,BER can decrease from 10- 2to 10- 5.展开更多
To reduce inter-symbol-interference (ISI) in underwater acoustic (UWA) communication systems, a method based on LDPC-QPSK joint iteration and Walsh-m composite sequence is proposed in this paper. The method is intende...To reduce inter-symbol-interference (ISI) in underwater acoustic (UWA) communication systems, a method based on LDPC-QPSK joint iteration and Walsh-m composite sequence is proposed in this paper. The method is intended for use in long-range and low signal-to-noise ratio (SNR) UWA communications. At the transmitter, Walsh-m composite sequence is introduced to resist multipath effect. At the receiver, a soft-input soft-output (SISO) module is implemented in a joint iterative process between QPSK demodulator and LDPC decoder. This method is demonstrated in three types of UWA channel models: positive, negative and invariable sound velocity gradients channels. It is shown that through contrastive simulation experiments, this method is more efficient than conventional methods based on independent decoding and demodulation. After two rounds of joint iteration, the proposed method can obtain 2.5 dB over conventional method at BER of 10-5. Numerical results verify that the proposed method is a good candidate for long-range underwater acoustic communication systems.展开更多
A network-coding-based multisource LDPC-coded cooperative MIMO scheme is proposed,where multiple sources transmit their messages to the destination with the assistance from a single relay.The relay cooperates with mul...A network-coding-based multisource LDPC-coded cooperative MIMO scheme is proposed,where multiple sources transmit their messages to the destination with the assistance from a single relay.The relay cooperates with multiple sources simultaneously via network-coding.It avoids the issues of imperfect frequency/timing synchronization and large transmission delay which may be introduced by frequency-division multiple access(FDMA)/code-division multiple access(CDMA)and time-division multiple access(TDMA)manners.The proposed joint″Min-Sum″iterative decoding is effectively carried out in the destination.Such a decoding algorithm agrees with the introduced equivalent joint Tanner graph which can be used to fully characterize LDPC codes employed by the sources and relay.Theoretical analysis and numerical simulation show that the proposed scheme with joint iterative decoding can achieve significant cooperation diversity gain.Furthermore,for the relay,compared with the cascade scheme,the proposed scheme has much lower complexity of LDPC-encoding and is easier to be implemented in the hardware with similar bit error rate(BER)performance.展开更多
基金Supported by the Open Research Fund of National Moblie Communications Research Laboratory of Southeast Uni-versity (No. W200704)
文摘In this paper, a new kind of simple-encoding irregular systematic LDPC codes suitable for one-relay coded cooperation is designed, where the proposed joint iterative decoding is effectively performed in the destination which is in accordance with the corresponding joint Tanner graph characterizing two different component LDPC codes used by the source and relay in ideal and non-ideal relay cooperations. The theoretical analysis and simulations show that the coded cooperation scheme obviously outperforms the coded non-cooperation one under the same code rate and decoding complex. The significant performance improvement can be virtually credited to the additional mutual exchange of the extrinsic information resulted by the LDPC code employed by the source and its counterpart used by the relay in both ideal and non-ideal cooperations.
基金The National Natural Science Founda-tion of China ( No 60496316)the National Hi-Tech Re-search and Development Program (863) of China (No2006-AA01Z270)
文摘An improved list sphere decoder (ILSD) is proposed based on the conventional list sphere decoder (LSD) and the reduced- complexity maximum likelihood sphere-decoding algorithm. Unlike the conventional LSD with fixed initial radius, the ILSD adopts an adaptive radius to accelerate the list cdnstruction. Characterized by low-complexity and radius-insensitivity, the proposed algorithm makes iterative joint detection and decoding more realizable in multiple-antenna systems. Simulation results show that computational savings of ILSD over LSD are more apparent with more transmit antennas or larger constellations, and with no performance degradation. Because the complexity of the ILSD algorithm almost keeps invariant with the increasing of initial radius, the BER performance can be improved by selecting a sufficiently large radius.
基金Sponsored by the Advanced Research Project of"Twelve-Five-Year-Plan"of Weapon System(Grant No.4010201050201)the China Postdoctoral Science Foundation Founded Project(Grant No.2011M500640)+1 种基金the Postdoctoral Science Foundation of Heilongjiang Province(Grant No.LBHZ10206)the China Fundamental Research Funds for the Central Universities(Grant No.HEUCF130802)
文摘Aimed at the conventional serial communication system fails when the channel was frequency-selective,long delay and multi-paths effect,resulting in inter-symbol-interference( ISI),an iterative system for underwater acoustic communication( UWAC) was proposed,which employed iterative differential detection and spread spectrum technique. The proposed scheme adopts π /4-DQPSK soft demodulation to overcome the difficulty of phase ambiguity. For suppression of ISI in UWAC,joint demodulation and decoding iteration was used. The communication scheme has the characteristic of long communication range at low SNR,and the maximum range is up to 100 km. The theoretic analysis and simulation results show that the proposed scheme outperforms traditional serial one. When SNR is- 6 dB,after four joint iterations,compared with serial scheme,BER can decrease from 10- 2to 10- 5.
基金Sponsored by the Fundamental Research Funds for the Central Universities(Grant No.HEUCF120814)
文摘To reduce inter-symbol-interference (ISI) in underwater acoustic (UWA) communication systems, a method based on LDPC-QPSK joint iteration and Walsh-m composite sequence is proposed in this paper. The method is intended for use in long-range and low signal-to-noise ratio (SNR) UWA communications. At the transmitter, Walsh-m composite sequence is introduced to resist multipath effect. At the receiver, a soft-input soft-output (SISO) module is implemented in a joint iterative process between QPSK demodulator and LDPC decoder. This method is demonstrated in three types of UWA channel models: positive, negative and invariable sound velocity gradients channels. It is shown that through contrastive simulation experiments, this method is more efficient than conventional methods based on independent decoding and demodulation. After two rounds of joint iteration, the proposed method can obtain 2.5 dB over conventional method at BER of 10-5. Numerical results verify that the proposed method is a good candidate for long-range underwater acoustic communication systems.
基金Supported by the Postdoctoral Science Foundation of China(2014M561694)the Science and Technology on Avionics Integration Laboratory and National Aeronautical Science Foundation of China(20105552)
文摘A network-coding-based multisource LDPC-coded cooperative MIMO scheme is proposed,where multiple sources transmit their messages to the destination with the assistance from a single relay.The relay cooperates with multiple sources simultaneously via network-coding.It avoids the issues of imperfect frequency/timing synchronization and large transmission delay which may be introduced by frequency-division multiple access(FDMA)/code-division multiple access(CDMA)and time-division multiple access(TDMA)manners.The proposed joint″Min-Sum″iterative decoding is effectively carried out in the destination.Such a decoding algorithm agrees with the introduced equivalent joint Tanner graph which can be used to fully characterize LDPC codes employed by the sources and relay.Theoretical analysis and numerical simulation show that the proposed scheme with joint iterative decoding can achieve significant cooperation diversity gain.Furthermore,for the relay,compared with the cascade scheme,the proposed scheme has much lower complexity of LDPC-encoding and is easier to be implemented in the hardware with similar bit error rate(BER)performance.