为研究水下高速射流气泡变化规律,采用VOF(Volume of Fluids)模型分别对水下等温高速气体射流和热高速气体射流动态流场进行了气水耦合数值求解。其中热射流考虑了汽化因素对气泡内气流场的影响,数值模拟了气泡的形成、发展、断裂及融...为研究水下高速射流气泡变化规律,采用VOF(Volume of Fluids)模型分别对水下等温高速气体射流和热高速气体射流动态流场进行了气水耦合数值求解。其中热射流考虑了汽化因素对气泡内气流场的影响,数值模拟了气泡的形成、发展、断裂及融合过程,揭示了气泡中压力和马赫数等参数的变化规律,得出了水下点火初期的流场特征。研究发现:在相同入口压力下,热射流产生气泡的空间尺度比等温射流产生的气泡空间尺度要小;气泡发展过程中会出现颈缩,也可能断裂,断裂与否取决于气泡颈缩处内外压差,气泡的颈缩与断裂是产生压力脉动的重要因素,并决定了压力峰的位置和大小,气泡断裂位置越靠近喷管出口,压力峰值越大,该压力峰值会影响火箭发动机尾流场特性。展开更多
An isothermal numerical study of effusion cooling flow is conducted using a large eddy simulation(LES) approach.Two main types of cooling are considered,namely tangential film cooling and oblique patch effusion coolin...An isothermal numerical study of effusion cooling flow is conducted using a large eddy simulation(LES) approach.Two main types of cooling are considered,namely tangential film cooling and oblique patch effusion cooling.To represent tangential film cooling,a simplified model of a plane turbulent wall jet along a flat plate in quiescent surrounding fluid is considered.In contrast to a classic turbulent boundary layer flow,the plane turbulent wall jet possesses an outer free shear flow region,an inner near wall region and an interaction region,characterised by substantial levels of turbulent shear stress transport.These shear stress characteristics hold significant implications for RANS modelling,implications that also apply to more complex tangential film cooling flows with non-zero free stream velocities.The LES technique used in the current study provides a satisfactory overall prediction of the plane turbulent wall jet flow,including the initial transition region,and the characteristic separation of the zero turbulent shear stress and zero shear strain locations.Oblique effusion patch cooling is modelled using a staggered array of 12 rows of effusion holes,drilled at 30° to the flat plate surface.The effusion holes connect two channels separated by the flat plate.Specifically,these comprise of a channel representing the combustion chamber flow and a cooling air supply channel.A difference in pressure between the two channels forces air from the cooling supply side,through the effusion holes,and into the combustion chamber side.Air from successive effusion rows coalesces to form an aerodynamic film between the combustion chamber main flow and the flat plate.In practical applications,this film is used to separate the hot combustion gases from the combustion chamber liner.The numerical model is shown to be capable of accurately predicting the injection,penetration,downstream decay,and coalescence of the effusion jets.In addition,the numerical model captures entrainment of the combustion chamber mainstream flow tow展开更多
This paper presents fluid mechanics of ventilation system formed by the momentum source and the buoyancy source,which investigates inter-action between the plume and the non-isothermal air jet since buoyancy source is...This paper presents fluid mechanics of ventilation system formed by the momentum source and the buoyancy source,which investigates inter-action between the plume and the non-isothermal air jet since buoyancy source is produced by the plume and momentum source is generated by the air jet,respectively. The interaction is discussed by a mathematical model,an idealized situation of the plume rising from a point heat source of buoyancy alone-in particular the initial momentum flux at the source is zero. Furthermore,the paper discusses the effects of the parameters such as strength of source,air-flow volume and air-flow velocity used in the mathematical-physical model. Considering the effect of the plume generated by the indoor heat source,one expression of trajectory of the non-isothermal air jet produced by jet diffuser is deduced. And field-experiment has also been carried out to illustrate the effect on flowing-action of the air jet and validate the theoretical work. It can be concluded that the heat sources do have effect on the flowing-action of the air jet,and the effect mainly depends on the interaction produced by the plume and the air jet. The results show that the thermal buoyant effect of plumes on the air jet should be taken into account if the indoor heat sources are large enough. Numerical simulation is conducted and coincides with the experimental results as well.展开更多
文摘为研究水下高速射流气泡变化规律,采用VOF(Volume of Fluids)模型分别对水下等温高速气体射流和热高速气体射流动态流场进行了气水耦合数值求解。其中热射流考虑了汽化因素对气泡内气流场的影响,数值模拟了气泡的形成、发展、断裂及融合过程,揭示了气泡中压力和马赫数等参数的变化规律,得出了水下点火初期的流场特征。研究发现:在相同入口压力下,热射流产生气泡的空间尺度比等温射流产生的气泡空间尺度要小;气泡发展过程中会出现颈缩,也可能断裂,断裂与否取决于气泡颈缩处内外压差,气泡的颈缩与断裂是产生压力脉动的重要因素,并决定了压力峰的位置和大小,气泡断裂位置越靠近喷管出口,压力峰值越大,该压力峰值会影响火箭发动机尾流场特性。
文摘An isothermal numerical study of effusion cooling flow is conducted using a large eddy simulation(LES) approach.Two main types of cooling are considered,namely tangential film cooling and oblique patch effusion cooling.To represent tangential film cooling,a simplified model of a plane turbulent wall jet along a flat plate in quiescent surrounding fluid is considered.In contrast to a classic turbulent boundary layer flow,the plane turbulent wall jet possesses an outer free shear flow region,an inner near wall region and an interaction region,characterised by substantial levels of turbulent shear stress transport.These shear stress characteristics hold significant implications for RANS modelling,implications that also apply to more complex tangential film cooling flows with non-zero free stream velocities.The LES technique used in the current study provides a satisfactory overall prediction of the plane turbulent wall jet flow,including the initial transition region,and the characteristic separation of the zero turbulent shear stress and zero shear strain locations.Oblique effusion patch cooling is modelled using a staggered array of 12 rows of effusion holes,drilled at 30° to the flat plate surface.The effusion holes connect two channels separated by the flat plate.Specifically,these comprise of a channel representing the combustion chamber flow and a cooling air supply channel.A difference in pressure between the two channels forces air from the cooling supply side,through the effusion holes,and into the combustion chamber side.Air from successive effusion rows coalesces to form an aerodynamic film between the combustion chamber main flow and the flat plate.In practical applications,this film is used to separate the hot combustion gases from the combustion chamber liner.The numerical model is shown to be capable of accurately predicting the injection,penetration,downstream decay,and coalescence of the effusion jets.In addition,the numerical model captures entrainment of the combustion chamber mainstream flow tow
基金Sponsored by the National Natural Science Foundation of China (Grant No 50478113)the Key Project of Shanghai Education Committee (Grant NoJ50502)Special Research Fund in Shanghai Colleges and Universities to Select and Train Outstanding Young Teachers (Grant No slg09011)
文摘This paper presents fluid mechanics of ventilation system formed by the momentum source and the buoyancy source,which investigates inter-action between the plume and the non-isothermal air jet since buoyancy source is produced by the plume and momentum source is generated by the air jet,respectively. The interaction is discussed by a mathematical model,an idealized situation of the plume rising from a point heat source of buoyancy alone-in particular the initial momentum flux at the source is zero. Furthermore,the paper discusses the effects of the parameters such as strength of source,air-flow volume and air-flow velocity used in the mathematical-physical model. Considering the effect of the plume generated by the indoor heat source,one expression of trajectory of the non-isothermal air jet produced by jet diffuser is deduced. And field-experiment has also been carried out to illustrate the effect on flowing-action of the air jet and validate the theoretical work. It can be concluded that the heat sources do have effect on the flowing-action of the air jet,and the effect mainly depends on the interaction produced by the plume and the air jet. The results show that the thermal buoyant effect of plumes on the air jet should be taken into account if the indoor heat sources are large enough. Numerical simulation is conducted and coincides with the experimental results as well.