In this work,the(2+1)-dimensional Date–Jimbo–Kashiwara–Miwa(DJKM)equation is studied by means of the ■-dressing method.A new ■ problem has been constructed by analyzing the characteristic function and the Green’...In this work,the(2+1)-dimensional Date–Jimbo–Kashiwara–Miwa(DJKM)equation is studied by means of the ■-dressing method.A new ■ problem has been constructed by analyzing the characteristic function and the Green’s function of its Lax representation.Based on solving the ■ equation and choosing the proper spectral transformation,the solution of the DJKM equation is constructed.Furthermore,the more general solution of the DJKM equation can be also obtained by ensuring the evolution of the time spectral data.展开更多
The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise w...The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.展开更多
We consider an inverse quadratic programming (IQP) problem in which the parameters in the objective function of a given quadratic programming (QP) problem are adjusted as little as possible so that a known feasibl...We consider an inverse quadratic programming (IQP) problem in which the parameters in the objective function of a given quadratic programming (QP) problem are adjusted as little as possible so that a known feasible solution becomes the optimal one. This problem can be formulated as a minimization problem with a positive semidefinite cone constraint and its dual (denoted IQD(A, b)) is a semismoothly differentiable (SC^1) convex programming problem with fewer variables than the original one. In this paper a smoothing Newton method is used for getting a Karush-Kuhn-Tucker point of IQD(A, b). The proposed method needs to solve only one linear system per iteration and achieves quadratic convergence. Numerical experiments are reported to show that the smoothing Newton method is effective for solving this class of inverse quadratic programming problems.展开更多
Some difficulties are pointed out in the methods for identification of obstacles based on the numerical verification of tile inclusion of a function in the range of an operator. Numerical examples are given to illustr...Some difficulties are pointed out in the methods for identification of obstacles based on the numerical verification of tile inclusion of a function in the range of an operator. Numerical examples are given to illustrate theoretical conclusions. Alternative methods of identification of obstacles are mentioned: the Support Function Method (SFM) and the Modified Rayleigh Conjecture (MRC) method.展开更多
The electric inversion technique reconstructs the subsurface medium distribution from acquired data.On the basis of electric inversion,objects buried under the earth or seabed,such as pipelines and unexploded ordnance...The electric inversion technique reconstructs the subsurface medium distribution from acquired data.On the basis of electric inversion,objects buried under the earth or seabed,such as pipelines and unexploded ordnance,are detected and located in a contactless manner.However,the process of accurately reconstructing the shape of the target object is challenging because electric inversion is a nonlinear and ill-posed problem.In this work,we present an inverse multiquadric(IMQ)regularization method based on the level set function for reconstructing buried pipelines.In the case of locating underwater objects,the unknown inversion area is split into two parts,the background and the pipeline with known conductivity.The geometry of the pipeline is represented based on the level set function for achieving a noiseless inversion image.To obtain a binary image,the IMQ is used as the regularization term,which‘pushes’the level set function away from 0.We also provide an appropriate method to select the bandwidth and regularization parameters for the IMQ regularization term,resulting in reconstructed images with sharp edges.The simulation results and analysis show that the proposed method performs better than classical inversion methods.展开更多
基金supported by National Natural Science Foundation of China under Grant Nos.12175111,11975131K C Wong Magna Fund in Ningbo University。
文摘In this work,the(2+1)-dimensional Date–Jimbo–Kashiwara–Miwa(DJKM)equation is studied by means of the ■-dressing method.A new ■ problem has been constructed by analyzing the characteristic function and the Green’s function of its Lax representation.Based on solving the ■ equation and choosing the proper spectral transformation,the solution of the DJKM equation is constructed.Furthermore,the more general solution of the DJKM equation can be also obtained by ensuring the evolution of the time spectral data.
文摘The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.
基金supported by the National Natural Science Foundation of China under project No. 10771026by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China
文摘We consider an inverse quadratic programming (IQP) problem in which the parameters in the objective function of a given quadratic programming (QP) problem are adjusted as little as possible so that a known feasible solution becomes the optimal one. This problem can be formulated as a minimization problem with a positive semidefinite cone constraint and its dual (denoted IQD(A, b)) is a semismoothly differentiable (SC^1) convex programming problem with fewer variables than the original one. In this paper a smoothing Newton method is used for getting a Karush-Kuhn-Tucker point of IQD(A, b). The proposed method needs to solve only one linear system per iteration and achieves quadratic convergence. Numerical experiments are reported to show that the smoothing Newton method is effective for solving this class of inverse quadratic programming problems.
文摘Some difficulties are pointed out in the methods for identification of obstacles based on the numerical verification of tile inclusion of a function in the range of an operator. Numerical examples are given to illustrate theoretical conclusions. Alternative methods of identification of obstacles are mentioned: the Support Function Method (SFM) and the Modified Rayleigh Conjecture (MRC) method.
基金supported by the National Natural Sci-ence Foundation of China(No.52101383)the Fundamen-tal Research Funds for the Central Universities(No.3072021CF0802)+3 种基金the Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology(No.AMCIT2101-02)the Sino-Russian Cooperation Fund of Harbin Engi-neering University(No.2021HEUCRF006)the Ministry of Science and Higher Education of the Russian Federation(No.075-15-2020-934)the International Science&Technology Cooperation Program of China(No.2014DF R10240).
文摘The electric inversion technique reconstructs the subsurface medium distribution from acquired data.On the basis of electric inversion,objects buried under the earth or seabed,such as pipelines and unexploded ordnance,are detected and located in a contactless manner.However,the process of accurately reconstructing the shape of the target object is challenging because electric inversion is a nonlinear and ill-posed problem.In this work,we present an inverse multiquadric(IMQ)regularization method based on the level set function for reconstructing buried pipelines.In the case of locating underwater objects,the unknown inversion area is split into two parts,the background and the pipeline with known conductivity.The geometry of the pipeline is represented based on the level set function for achieving a noiseless inversion image.To obtain a binary image,the IMQ is used as the regularization term,which‘pushes’the level set function away from 0.We also provide an appropriate method to select the bandwidth and regularization parameters for the IMQ regularization term,resulting in reconstructed images with sharp edges.The simulation results and analysis show that the proposed method performs better than classical inversion methods.