In-situ Al2O3/TiAl composites were successfully synthesized from the starting powders of Ti, Al, TiO2 and Nb2O5. The oxidation behavior of the composites at 900℃ in static air was investigated. The results indicate t...In-situ Al2O3/TiAl composites were successfully synthesized from the starting powders of Ti, Al, TiO2 and Nb2O5. The oxidation behavior of the composites at 900℃ in static air was investigated. The results indicate that the composite samples present a much lower oxidation mass gain. Under long-time intensive oxidation exposure, the formed oxide scale is multi-layer. The formation of the outer TiO2 layer is fine and dense, the internal Al2O3 scale has good adhesiveness with the outer TiO2 scale, and the TiO2+Al2O3 mixed layer forming the protective oxide scale is favorable for the improvement of oxidation resistance. It is believed that the incorporation of Al2O3 particulates into the metal matrix decreases the coefficient of thermal expansion of the substrate, and forms a local three-dimensional network structure that can hold the oxide scale. The formation of the oxide scale with finer particle size, stronger adherence, less micro-defects and slower growth rate can contribute to the improvement of oxidation resistance. Nb element plays an important role in reducing the internal oxidation action of the materials, restraining the growth of TiO2 crystals and promoting the stable formation of the Al2O3-riched layer, which is beneficial to improve the oxidation properties.展开更多
Based on YU’s solids and molecules emperical electron theory(EET), interface valence electron structure of TiC-Fe3Al composites was set up, and the valence electron density of different atomic states TiC and Fe3Al co...Based on YU’s solids and molecules emperical electron theory(EET), interface valence electron structure of TiC-Fe3Al composites was set up, and the valence electron density of different atomic states TiC and Fe3Al composites in various planes was determined. The results indicate that the electron density of (1 00)Fe3Al is consistent with that of (110)TiC in the first-class a pproximation, the absolute value of minimum electron density difference along the interface is 0.007 37 nm?2, and the relative value is 0.759%. (1 10)TiC //(100)Fe3Al preferred orientation is believed to benefit the formation of the cuboidal shape TiC. In the other hand, it shows that the particle growth is accompanied by the transport of electron, the deviation continuity of electron density intrinsically hinders the grain growth. The electron density of (100)TiC is not consistent with Fe3Al arbitrary crystallographic plane, thus it well explains that the increased titanium and carbon contents do not increase the size of large particles. The crystallographic orientation of (1 10)TiC //(100)Fe3Al will improve the mechanical properties. Therefore interface electron theory is an effective theoretical implement for designing excellent property of composites.展开更多
Ternary Al-4.5 (wt%) Cu-3.4 (wt%) Fe in-situ composite was prepared at 1100°C by conventional casting method. However, this particular alloy contains larger needle-shaped intermetallics of Al3Fe phase. These ...Ternary Al-4.5 (wt%) Cu-3.4 (wt%) Fe in-situ composite was prepared at 1100°C by conventional casting method. However, this particular alloy contains larger needle-shaped intermetallics of Al3Fe phase. These exert adverse effect on the mechanical properties of the alloys. The larger shape and uneven orientation of the intermetallic were found to be responsible for the degradation of properties. The main purpose of this study was to modify the geometry of those needles by adding magnesium (Mg) as a fourth material. A series of alloys were prepared by adding 4, 6, 8, 10, wt% Mg in Al-4.5 (wt%) Cu-3.4 (wt%) Fe alloy. Microstructures were observed by optical microscopy. Mechanical properties like ultimate tensile strength, % elongation, % area reduction, hardness and wear test were determined. The study revealed that Mg transformed the needles of Al3Fe into globular shape which gave the alloys better mechanical properties.展开更多
This paper presents the results of the comparative study of as cast microstructures and mechanical properties viz yield strength, ultimate tensile strength, elastic modulus, percentage elongation, hardness, percentage...This paper presents the results of the comparative study of as cast microstructures and mechanical properties viz yield strength, ultimate tensile strength, elastic modulus, percentage elongation, hardness, percentage porosity and fracture characteristic of 5 wt% SiC and Al2O3 particulate reinforced Al-4% Cu-2.5% Mg matrix composites. These composite materials were prepared through stir casting process. Quantitative metallographic techniques were utilized to determine the average grain size of particles. The microstructures and tensile fracture characteristic of the representative samples of the composites were examined using optical microscope (OM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD) techniques. The experimental results demonstrate a fairly uniform distribution of 50.8 μm Al2O3 and 49.2 μm SiC spherical particles with some clustering in few areas. At the interfaces of Al2O3 and the matrix, MgO and MgAl2O4 were observed. Similarly, Al4C3 was formed at the interfaces between SiC and the matrix. The mechanical property test results revealed that, for the same weight percentage of reinforcement, Al-4% Cu-2.5% Mg/5 wt% SiC composite exhibit a 15.8%, 16.4%, 4.97% and 10.8% higher yield strength, ultimate tensile strength, elastic modulus, and hardness, respectively. On the other hand, even if some porosity was observed in the Al2O3 reinforced composite, the percentage elongation (ductility) was 31% higher than that of SiC rein-forced composite. The tensile specimen of SiC reinforced composite failed in a brittle fashion without neck formation, whereas the Al2O3 reinforced composite failed in a ductile fashion with noticeable neck formation.展开更多
Pure copper and its composites reinforced with Ni3Al particles were produced by powder metallurgy (PM). Ni3Al powders were produced by mechanical ball milling from vacuum arc melted compounds. The Ni3Al powders were...Pure copper and its composites reinforced with Ni3Al particles were produced by powder metallurgy (PM). Ni3Al powders were produced by mechanical ball milling from vacuum arc melted compounds. The Ni3Al powders were characterized by X-ray diffraction (XRD). The microscopy examinations revealed that the Ni3Al particles were distributed uniformly in the matrix. The effects of the particle fraction on the density, electrical conductivity, strength and dry sliding wear resistance of composite were investigated. It was found that the density and electrical conductivity of the composites decrease while the compression yield strength and wear resistance of composites increase with an increase in the particle fraction. The dry sliding wear tests were performed with pin-on-disk geometry. After sliding wear tests, the worn surfaces were examined by scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). Results have shown that the wear mechanism is oxidative and adhesive.展开更多
基金financially supported by the Russian Science Foundation(No.20-19-00746)(SEM,DSC,thermodynamic calculations)the federal academic leadership program Priority 2030 of NUST MISIS(DFT,XRD)。
基金supported by the Special Program of the Education Bureau of Shaanxi Province of China (No.08JK240)the Breeding Program for Provincial Level Key Research Base of Shaanxi University of Technology (No.SLGJD0806)
文摘In-situ Al2O3/TiAl composites were successfully synthesized from the starting powders of Ti, Al, TiO2 and Nb2O5. The oxidation behavior of the composites at 900℃ in static air was investigated. The results indicate that the composite samples present a much lower oxidation mass gain. Under long-time intensive oxidation exposure, the formed oxide scale is multi-layer. The formation of the outer TiO2 layer is fine and dense, the internal Al2O3 scale has good adhesiveness with the outer TiO2 scale, and the TiO2+Al2O3 mixed layer forming the protective oxide scale is favorable for the improvement of oxidation resistance. It is believed that the incorporation of Al2O3 particulates into the metal matrix decreases the coefficient of thermal expansion of the substrate, and forms a local three-dimensional network structure that can hold the oxide scale. The formation of the oxide scale with finer particle size, stronger adherence, less micro-defects and slower growth rate can contribute to the improvement of oxidation resistance. Nb element plays an important role in reducing the internal oxidation action of the materials, restraining the growth of TiO2 crystals and promoting the stable formation of the Al2O3-riched layer, which is beneficial to improve the oxidation properties.
基金Project(Q99F01) supported by the Natural Science Foundation of Shandong Province, China
文摘Based on YU’s solids and molecules emperical electron theory(EET), interface valence electron structure of TiC-Fe3Al composites was set up, and the valence electron density of different atomic states TiC and Fe3Al composites in various planes was determined. The results indicate that the electron density of (1 00)Fe3Al is consistent with that of (110)TiC in the first-class a pproximation, the absolute value of minimum electron density difference along the interface is 0.007 37 nm?2, and the relative value is 0.759%. (1 10)TiC //(100)Fe3Al preferred orientation is believed to benefit the formation of the cuboidal shape TiC. In the other hand, it shows that the particle growth is accompanied by the transport of electron, the deviation continuity of electron density intrinsically hinders the grain growth. The electron density of (100)TiC is not consistent with Fe3Al arbitrary crystallographic plane, thus it well explains that the increased titanium and carbon contents do not increase the size of large particles. The crystallographic orientation of (1 10)TiC //(100)Fe3Al will improve the mechanical properties. Therefore interface electron theory is an effective theoretical implement for designing excellent property of composites.
文摘Ternary Al-4.5 (wt%) Cu-3.4 (wt%) Fe in-situ composite was prepared at 1100°C by conventional casting method. However, this particular alloy contains larger needle-shaped intermetallics of Al3Fe phase. These exert adverse effect on the mechanical properties of the alloys. The larger shape and uneven orientation of the intermetallic were found to be responsible for the degradation of properties. The main purpose of this study was to modify the geometry of those needles by adding magnesium (Mg) as a fourth material. A series of alloys were prepared by adding 4, 6, 8, 10, wt% Mg in Al-4.5 (wt%) Cu-3.4 (wt%) Fe alloy. Microstructures were observed by optical microscopy. Mechanical properties like ultimate tensile strength, % elongation, % area reduction, hardness and wear test were determined. The study revealed that Mg transformed the needles of Al3Fe into globular shape which gave the alloys better mechanical properties.
文摘This paper presents the results of the comparative study of as cast microstructures and mechanical properties viz yield strength, ultimate tensile strength, elastic modulus, percentage elongation, hardness, percentage porosity and fracture characteristic of 5 wt% SiC and Al2O3 particulate reinforced Al-4% Cu-2.5% Mg matrix composites. These composite materials were prepared through stir casting process. Quantitative metallographic techniques were utilized to determine the average grain size of particles. The microstructures and tensile fracture characteristic of the representative samples of the composites were examined using optical microscope (OM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD) techniques. The experimental results demonstrate a fairly uniform distribution of 50.8 μm Al2O3 and 49.2 μm SiC spherical particles with some clustering in few areas. At the interfaces of Al2O3 and the matrix, MgO and MgAl2O4 were observed. Similarly, Al4C3 was formed at the interfaces between SiC and the matrix. The mechanical property test results revealed that, for the same weight percentage of reinforcement, Al-4% Cu-2.5% Mg/5 wt% SiC composite exhibit a 15.8%, 16.4%, 4.97% and 10.8% higher yield strength, ultimate tensile strength, elastic modulus, and hardness, respectively. On the other hand, even if some porosity was observed in the Al2O3 reinforced composite, the percentage elongation (ductility) was 31% higher than that of SiC rein-forced composite. The tensile specimen of SiC reinforced composite failed in a brittle fashion without neck formation, whereas the Al2O3 reinforced composite failed in a ductile fashion with noticeable neck formation.
基金supported by Eskisehir Osmangazi University,Research Foundation (project No. 200837014),Eski sehir,Turkey
文摘Pure copper and its composites reinforced with Ni3Al particles were produced by powder metallurgy (PM). Ni3Al powders were produced by mechanical ball milling from vacuum arc melted compounds. The Ni3Al powders were characterized by X-ray diffraction (XRD). The microscopy examinations revealed that the Ni3Al particles were distributed uniformly in the matrix. The effects of the particle fraction on the density, electrical conductivity, strength and dry sliding wear resistance of composite were investigated. It was found that the density and electrical conductivity of the composites decrease while the compression yield strength and wear resistance of composites increase with an increase in the particle fraction. The dry sliding wear tests were performed with pin-on-disk geometry. After sliding wear tests, the worn surfaces were examined by scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). Results have shown that the wear mechanism is oxidative and adhesive.