期刊文献+
共找到3,190篇文章
< 1 2 160 >
每页显示 20 50 100
成立国家天然气管道公司的必要性及实施建议 被引量:16
1
作者 燕群 《天然气工业》 EI CAS CSCD 北大核心 2016年第10期163-172,共10页
目前,我国天然气产业加速发展仍受制于运输和销售捆绑、管道不能公平无歧视向第三方开放、管输价格水平普遍偏高等因素的影响,管网改革已迫在眉睫。为此,研究了我国和国外发达国家天然气管道发展现状、管理体制机制运行情况以及所存在... 目前,我国天然气产业加速发展仍受制于运输和销售捆绑、管道不能公平无歧视向第三方开放、管输价格水平普遍偏高等因素的影响,管网改革已迫在眉睫。为此,研究了我国和国外发达国家天然气管道发展现状、管理体制机制运行情况以及所存在的差异和问题,结论认为:成立国家天然气管道公司将有助于尽早实现天然气市场化定价、降低管道运输价格水平、促进天然气应用规模扩大、增强管网系统调峰和应急保供能力,是我国天然气管网独立改革的最优选项。结合我国国情,建议从以下9个方面着手改革:(1)分阶段完成国家天然气管道公司的建立;(2)尽早强制推行运销分离;(3)明确纳入国家管道公司的管道范围;(4)改革管道建设审批和管理机制;(5)严格国家天然气管道公司成本监审、严控收益水平;(6)相关部门给予政策支持;(7)加快储气调峰设施建设;(8)实施新气源项目配套管道代建回购机制;(9)加强国家管道公司安全高效运营机制研究。 展开更多
关键词 中国 天然气 管网独立 互连互通 运销分离 国家天然气管道公司 市场化 管道运输价格 体制机制
下载PDF
N-doped graphene grown on silk cocoon-derived interconnected carbon fibers for oxygen reduction reaction and photocatalytic hydrogen production 被引量:14
2
作者 Yongpeng Lei Qi Shi +4 位作者 Cheng Han Bing Wang Nan Wu Hong Wang Yingde Wang 《Nano Research》 SCIE EI CAS CSCD 2016年第8期2498-2509,共12页
Carbon-based metal-free catalysts are a promising substitute for the rare and expensive platinum (Pt) used in the oxygen reduction reaction. We herein report N-doped graphene (NG) that is exquisitely integrated in... Carbon-based metal-free catalysts are a promising substitute for the rare and expensive platinum (Pt) used in the oxygen reduction reaction. We herein report N-doped graphene (NG) that is exquisitely integrated into highly conductive frameworks, simultaneously providing more active sites and higher conductivity. The NG was in situ grown on carbon fibers derived from silk cocoon (SCCf) using a simple one-step thermal treatment. The resulting product (NG-SCCf), possessing a meso-/macroporous structure with three-dimensional (3D) interconnected networks, exhibits an onset potential that is only 0.1 V less negative than that of Pt/C and shows stability and methanol tolerance superior to those of Pt/C in alkaline media. Moreover, in the absence of Pt as co-catalyst, NG-SCCf shows a photocatalytic H2 production rate of 66.0 ~tmol-h l.g 1, 4.4-fold higher than that of SCCf. This outstanding activity is intimately related to the in situ grown NG, hierarchically porous structure, and 3D interconnected networks, which not only introduce more active sites but also enable smooth electron transfer, mass transport, and effective separation of electron-hole pairs. Considering the abundance of the green raw material in combination with easy and low-cost preparation, this work contributes to the development of advanced sustainable catalysts in energy storage/conversion fields, such as electro- and photocatalysis. 展开更多
关键词 N-doped graphene silk cocoon interconnected carbonfibers oxygen reduction reaction photocatalytic hydrogenproduction
原文传递
Analysis of the Sending-Side System Instability Caused by Multiple HVDC Commutation Failure 被引量:15
3
作者 Jingzhe Tu Jian Zhang +3 位作者 Guangquan Bu Jun Yi Yonghua Yin Junchuan Jia 《CSEE Journal of Power and Energy Systems》 SCIE 2015年第4期84-91,共8页
As high-voltage direct current(HVDC)lines with large capacity are being commissioned with higher frequency,the characteristics of“strong”DC and“weak”AC transmission in the power grid are topics of interest.In part... As high-voltage direct current(HVDC)lines with large capacity are being commissioned with higher frequency,the characteristics of“strong”DC and“weak”AC transmission in the power grid are topics of interest.In particular,the coupling and interaction between the sending-side and receivingside AC systems interconnected by large-scale DC links is gaining importance.In this paper,the impact of the multiple HVDC commutation failure on the stability of the sending system under different power flow directions is analyzed based on the threearea AC/DC equivalent model.The main influencing factors and the counter-measures are discussed,and the single HVDC line blocking is taken as a comparison.Finally,the results are verified using the North China-Central China-East China power grid case system.The study provides a basis and reference to ensure security and stability of the ultra-high-voltage(UHV)AC/DC hybrid power grid. 展开更多
关键词 High-voltage direct current(HVDC)asynchronous interconnected system instability mechanism multiple HVDC commutation failure sending-side system stability
原文传递
Distributed energy management for interconnected operation of combined heat and power-based microgrids with demand response 被引量:12
4
作者 Nian LIU Jie WANG Lingfeng WANG 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2017年第3期478-488,共11页
From the perspective of transactive energy, the energy trading among interconnected microgrids(MGs) is promising to improve the economy and reliability of system operations. In this paper, a distributed energy managem... From the perspective of transactive energy, the energy trading among interconnected microgrids(MGs) is promising to improve the economy and reliability of system operations. In this paper, a distributed energy management method for interconnected operations of combined heat and power(CHP)-based MGs with demand response(DR) is proposed. First, the system model of operational cost including CHP, DR, renewable distributed sources, and diesel generation is introduced, where the DR is modeled as a virtual generation unit. Second, the optimal scheduling model is decentralized as several distributed scheduling models in accordance with the number of associated MGs. Moreover, a distributed iterative algorithm based on subgradient with dynamic search direction is proposed. During the iterative process, the information exchange between neighboring MGs is limited to Lagrange multipliers and expected purchasing energy. Finally,numerical results are given for an interconnected MGs system consisting of three MGs, and the effectiveness of the proposed method is verified. 展开更多
关键词 interconnected microgrids Energy management Distributed optimization Demand response Combined heat and power(CHP)
原文传递
The Frost-resisting Durability of High Strength Self-Compacting Pervious Concrete in Deicing Salt Environment 被引量:10
5
作者 封金财 ZONG Ningwen +3 位作者 ZHU Pinghua 刘惠 YAO Lan GENG Jiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期167-175,共9页
A high strength self-compacting pervious concrete(SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations(0%, 3%, 5%,... A high strength self-compacting pervious concrete(SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations(0%, 3%, 5%, 10%, and 20%) was investigated. The mass-loss rate, relative dynamic modulus of elasticity, compressive strength, flexural strength and hydraulic conductivity of SCPC after 300 freeze-thaw cycles were measured to evaluate the frost-resisting durability. In addition, the microstructures of SCPC near the top-bottom interconnected pores after 300 freeze-thaw cycles were observed by SEM. The results show that the high strength SCPC possesses much better frost-resisting durability than traditional pervious concrete(TPC) after 300 freeze-thaw cycles, which can be used in heavy loading roads. The most serious freeze-thaw damage emerges in the SCPC immersed in the 3% of Na Cl solution, while there is no obvious damage in 20% of Na Cl solution. Furthermore, it can be deduced that the high strength SCPC can be used for 100 years in a cold environment. 展开更多
关键词 high strength SELF-COMPACTING pervious concrete top-bottom interconnected pores heavy loading road frost-resisting DURABILITY DEICING salt ENVIRONMENT
下载PDF
A New Approach for the Health Assessment of River Systems Based on Interconnected Water System Networks 被引量:11
6
作者 ZHAO Junkai LI Lixian +2 位作者 ZHANG Aishe LI Jiufa GUO Qiuxia 《Journal of Resources and Ecology》 CSCD 2017年第3期251-257,共7页
Interconnected river system networks is a national water conservancy strategy in China and focus of research. Here we discuss the classification system, material and energy exchange between rivers and lakes, various d... Interconnected river system networks is a national water conservancy strategy in China and focus of research. Here we discuss the classification system, material and energy exchange between rivers and lakes, various dynamic flows and ecological functions of river-lake interconnected relationships. We then propose a novel method for the health assessment of river systems based on interconnected water system networks. In a healthy river system there is "material and energy exchange" and it is the first and foremost relationship of material and energy exchange between rivers and lakes. There are unobstructed various "flows" between rivers and lakes including material flows (water, dissolved substances, sediments, organisms and contaminants), energy flows (water levels, flow and flow velocity), information flows (information generated with water flows, organisms and human activities) and value flows (shipping, power generation, drinking and irrigation). Under the influences of na- ture and human activity, various flows are connected by river-lake interconnection to carry material and energy exchange between rivers and lakes to achieve river-lake interactions. The material and energy exchange between rivers and lakes become one of the approaches and the direct driving forces of changes in river-lake interconnected relationships. The benignant changes in river-lake interconnected relationship tend to be in relatively steady state and in ideal dynamic balance. 展开更多
关键词 interconnected water system network classification system material and energy exchange ecological function health assessment of river system river-lake system
原文传递
智慧城市关键技术与实现路径研究 被引量:10
7
作者 徐静 《电信科学》 北大核心 2013年第8期123-126,共4页
随着新一代信息技术的发展,以透彻感知、深度互联、智能应用为特点的智慧城市成为城市信息化的发展趋势和新的愿景。智慧城市是智慧地球在城市的具体体现,其数据源及采集获取、数据管理与存储、分析功能和业务应用等技术有别于传统的信... 随着新一代信息技术的发展,以透彻感知、深度互联、智能应用为特点的智慧城市成为城市信息化的发展趋势和新的愿景。智慧城市是智慧地球在城市的具体体现,其数据源及采集获取、数据管理与存储、分析功能和业务应用等技术有别于传统的信息化城市。根据智慧城市的特征和建设内容,分析智慧城市的关键技术,研究提出物联化、互联化、智能化的技术路径,为我国智慧城市工程实践提供参考。 展开更多
关键词 智慧城市 物联化 互联化 智能化
下载PDF
Facile synthesis of bimodal macroporous g-C_3N_4/SnO_2 nanohybrids with enhanced photocatalytic activity 被引量:8
8
作者 Yingzhi Chen Wenhao Li +7 位作者 Dongjian Jiang Kuo Men Zhen Li Ling Li Shizheng Sun Jingyuan Li Zheng-Hong Huang Lu-Ning Wang 《Science Bulletin》 SCIE EI CAS CSCD 2019年第1期44-53,共10页
It is of vital importance to construct highly interconnected,macroporous photocatalyst to improve its efficiency and applicability in solar energy conversion and environment remediation.Graphitic-like C_3N_4(g-C_3N_4)... It is of vital importance to construct highly interconnected,macroporous photocatalyst to improve its efficiency and applicability in solar energy conversion and environment remediation.Graphitic-like C_3N_4(g-C_3N_4),as an analogy to two-dimensional(2D)graphene,is highly identified as a visible-lightresponsive polymeric semiconductor.Moreover,the feasibility of g-C_3N_4 in making porous structures has been well established.However,the preparation of macroporous g-C_3N_4 with abundant porous networks and exposure surface,still constitutes a difficulty.To solve it,we report a first facile preparation of bimodal macroporous g-C_3N_4 hybrids with abundant in-plane holes,which is simply enabled by in-situ modification through thermally treating the mixture of thiourea and SnCl_4(pore modifier)after rotary evaporation.For one hand,the formed in-plane macropores endow the g-C_3N_4 system with plentiful active sites and short,cross-plane diffusion channels that can greatly speed up mass transport and transfer.For another,the heterojunctions founded between g-C_3N_4 and SnO_2 consolidate the electron transfer reaction to greatly reduce the recombination probability.As a consequence,the resulted macroporous gC_3N_4/SnO_2 nanohybrid had a high specific surface area(SSA)of 44.3 m^2/g that was quite comparable to most nano/mesoporous g-C_3N_4 reported.The interconnected porous network also rendered a highly intensified light absorption by strengthening the light penetration.Together with the improved mass transport and electron transfer,the macroporous g-C_3N_4/SnO_2 hybrid exhibited about 2.4-fold increment in the photoactivity compared with pure g-C_3N_4.Additionally,the recyclability of such hybrid could be guaranteed after eight successive uses. 展开更多
关键词 Highly MACROPOROUS g-C3N4 NANOHYBRID interconnected network Photocatalysis
原文传递
Hierarchical and lamellar porous carbon as interconnected sulfur host and polysulfide-proof interlayer for Li–S batteries 被引量:5
9
作者 Peifan Wang Xin Dai +9 位作者 Peng Xu Sijiang Hu Xuyang Xiong Kunyang Zou Shengwu Guo Junjie Sun Chaofeng Zhang Yongning Liu Tengfei Zhou Yuanzhen Chen 《eScience》 2023年第1期89-98,共10页
A robust three-dimensional(3D)interconnected sulfur host and a polysulfide-proof interlayer are key components in high-performance Li–S batteries.Herein,cellulose-based 3D hierarchical porous carbon(HPC)and two-dimen... A robust three-dimensional(3D)interconnected sulfur host and a polysulfide-proof interlayer are key components in high-performance Li–S batteries.Herein,cellulose-based 3D hierarchical porous carbon(HPC)and two-dimensional(2D)lamellar porous carbon(LPC)are employed as the sulfur host and polysulfide-proof inter-layer,respectively,for a Li–S battery.The 3D HPC displays a cross-linked macroporous structure,which allows high sulfur loading and restriction capability and provides unobstructed electrolyte diffusion channels.With a stackable carbon sheet of 2D LPC that has a large plane view size and is ultrathin and porous,the LPC-coated separator effectively inhibits polysulfides.An optimized combination of the HPC and LPC yields an electrode structure that effectively protects the lithium anode against corrosion by polysulfides,giving the cell a high ca-pacity of 1339.4 mAh g^(-1) and high stability,with a capacity decay rate of 0.021% per cycle at 0.2C.This work provides a new understanding of biomaterials and offers a novel strategy to improve the performance of Li–S batteries for practical applications. 展开更多
关键词 Lithium-sulfur batteries Hierarchical porous carbon Lamellar porous carbon interconnected sulfur host Polysulfide-proof interlayer
原文传递
Chemical looping combustion of coal in interconnected fluidized beds 被引量:6
10
作者 SHEN LaiHong ZHENG Min +2 位作者 XIAO Jun ZHANG Hui XIAO Rui 《Science China(Technological Sciences)》 SCIE EI CAS 2007年第2期230-240,共11页
Chemical looping combustion is the indirect combustion by use of oxygen carrier. It can be used for CO2 capture in power generating processes. In this paper, chemical looping combustion of coal in interconnected fluid... Chemical looping combustion is the indirect combustion by use of oxygen carrier. It can be used for CO2 capture in power generating processes. In this paper, chemical looping combustion of coal in interconnected fluidized beds with inherent separation of CO2 is proposed. It consists of a high velocity fluidized bed as an air reactor in which oxygen carrier is oxidized, a cyclone, and a bubbling fluidized bed as a fuel reactor in which oxygen carrier is reduced by direct and indirect reactions with coal. The air reactor is connected to the fuel reactor through the cyclone. To raise the high carbon conversion efficiency and separate oxygen carrier particle from ash, coal slurry instead of coal particle is introduced into the bottom of the bubbling fluidized bed. Coal gasification and the reduction of oxygen carrier with the water gas take place simultaneously in the fuel reactor. The flue gas from the fuel reactor is CO2 and water. Almost pure CO2 could be obtained after the condensation of water. The reduced oxygen carrier is then returned back to the air reactor, where it is oxidized with air. Thermodynamics analysis indicates that NiO/Ni oxygen carrier is the optimal one for chemical looping combustion of coal. Simulation of the processes for chemical looping combustion of coal, including coal gasification and reduction of oxygen carrier, is carried out with Aspen Plus software. The effects of air reactor temperature, fuel reactor temperature, and ratio of water to coal on the composition of fuel gas, recirculation of oxygen carrier particles, etc., are discussed. Some useful results are achieved. The suitable temperature of air reactor should be between 1050–1150°C and the optimal temperature of the fuel reactor be between 900–950°C. 展开更多
关键词 CHEMICAL LOOPING COMBUSTION COAL interconnected fluidized BEDS CO2 SEPARATION
原文传递
From Independence to Interconnection--A Review of AI Technology Applied in Energy Systems 被引量:8
11
作者 Qiuye Sun Lingxiao Yang 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2019年第1期21-34,共14页
The development of diversified energy structures,distributed energy scheduling models and active participation ability of users,leads to a rapid movement toward energy system in which different energy carriers and sys... The development of diversified energy structures,distributed energy scheduling models and active participation ability of users,leads to a rapid movement toward energy system in which different energy carriers and systems interact together in a synergistic way.This energy development will face many challenges with the requirements of big data processing capability,professional skill,distributed collaboration and realtime monitoring for the energy system that demands an intelligent and flexible tool to realize the smart energy.Artificial intelligence(AI)technology has become a focus because of its better performance.This paper proposed a classification method that incorporates the intelligence of an independent energy unit(IEU)and the intelligence among interconnected energy units(IEUS)to review the development of AI technology in energy systems.The dominant structures of IEU can be considered from three aspects including perception,decision and implementation to study the optimal strategy for AI methods utilized in IEU.And considering the interaction relationship of IEUS,the AI applied for it can be described by the coordinated relationship and adversarial relationship problems to achieve consensus.By discussing the AI technologies and the potentials of AI in the energy system,some suggestions are presented to improve intelligent technologies for sustainable energy systems in the future. 展开更多
关键词 Artificial intelligence energy system independent energy unit interconnected energy units smart energy
原文传递
Optimizing Power Flow in Northern Cameroon’s Interconnected Grid: Challenges and Solutions
12
作者 Jean Ndoumbe Ivan Basile Kabeina +1 位作者 Michael Koumbou Piembe Martin Ndjock 《Journal of Power and Energy Engineering》 2024年第9期63-83,共21页
This paper presents an analysis of the power flow within the Northern Interconnected Grid of Cameroon. The Newton-Raphson method has been performed, known for its accuracy, under MATLAB software, to model and solve co... This paper presents an analysis of the power flow within the Northern Interconnected Grid of Cameroon. The Newton-Raphson method has been performed, known for its accuracy, under MATLAB software, to model and solve complex power flow equations. This study simulates a series of outage scenarios to evaluate the responsiveness of the grid. The results obtained underline the crucial importance of reactive power management and highlight the urgent need to consolidate the grid infrastructure of North Cameroon. To increase grid resilience and stability, the paper recommends the strategic integration of renewables and the development of interconnections with other power grids. These measures are presented as viable solutions to meet current and future energy distribution challenges, ensuring a reliable and sustainable power supply for Cameroon. 展开更多
关键词 Power Flow Northern interconnected Grid NEWTON-RAPHSON MATLAB Grid Stability
下载PDF
Vibration Performance Analysis of a Mining Vehicle with Bounce and Pitch Tuned Hydraulically Interconnected Suspension 被引量:6
13
作者 Jie Zhang Yuanwang Deng +3 位作者 Nong Zhang Bangji Zhang Hengmin Qi Minyi Zheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第1期195-211,共17页
The current investigations primarily focus on using advanced suspensions to overcome the tradeo design of ride comfort and handling performance for mining vehicles. It is generally realized by adjusting spring sti nes... The current investigations primarily focus on using advanced suspensions to overcome the tradeo design of ride comfort and handling performance for mining vehicles. It is generally realized by adjusting spring sti ness or damping parameters through active control methods. However, some drawbacks regarding control complexity and uncertain reliability are inevitable for these advanced suspensions. Herein, a novel passive hydraulically interconnected suspension(HIS) system is proposed to achieve an improved ride-handling compromise of mining vehicles. A lumped-mass vehicle model involved with a mechanical–hydraulic coupled system is developed by applying the free-body diagram method. The transfer matrix method is used to derive the impedance of the hydraulic system, and the impedance is integrated to form the equation of motions for a mechanical–hydraulic coupled system. The modal analysis method is employed to obtain the free vibration transmissibilities and force vibration responses under di erent road excitations. A series of frequency characteristic analyses are presented to evaluate the isolation vibration performance between the mining vehicles with the proposed HIS and the conventional suspension. The analysis results prove that the proposed HIS system can e ectively suppress the pitch motion of sprung mass to guarantee the handling performance, and favorably provide soft bounce sti ness to improve the ride comfort. The distribution of dynamic forces between the front and rear wheels is more reasonable, and the vibration decay rate of sprung mass is increased e ectively. This research proposes a new suspension design method that can achieve the enhanced cooperative control of bounce and pitch motion modes to improve the ride comfort and handling performance of mining vehicles as an e ective passive suspension system. 展开更多
关键词 Hydraulically interconnected SUSPENSION Transfer matrix method Modal VIBRATION analysis RIDE comfort Handling performance MINING VEHICLE
下载PDF
Overview of Resilient Traction Power Supply Systems in Railways with Interconnected Microgrid 被引量:7
14
作者 Peng Cheng Huiwen Kong +1 位作者 Jing Ma Limin Jia 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第5期1122-1132,共11页
In recent years,the achievement of a renewable and sustainable traction power supply system(TPSS)in the rail sector has become a significant challenge.Focusing on this issue,this paper firstly provides a comprehensive... In recent years,the achievement of a renewable and sustainable traction power supply system(TPSS)in the rail sector has become a significant challenge.Focusing on this issue,this paper firstly provides a comprehensive overview and classification of the state-of-art TPSSs in DC and AC railway.Then,together with low voltage(LV)DC,medium voltage(MV)DC,LV AC,and hybrid AC/DC interconnected microgrid(IMGs),various architectures of resilient TPSSs are proposed for renewable energy integration into DC and AC railway.The resilient TPSS offers on-site access and local consumption of renewable sources alongside railways and guarantees a sustainable power supply in the case of grid disturbances and failures,e.g.,voltage unbalance,harmonic and violent fluctuation,power outage,and extreme events in the wake of natural disasters and extreme weather.This approach also helps facilitate the development of the next generation TPSSs for enhanced flexibility and sustainability.Then,based on a comparative analysis of different resilient TPSSs,a brief outlook of the future trend is given.Finally,it is concluded that resilient TPSS provides a universal solution for both renewable energy integration and high-quality power supply against grid disturbances and failures. 展开更多
关键词 interconnected microgrid resilient traction power supply system renewable source railway electrification
原文传递
Reliability Assessment of Interconnected Power Systems with HVDC Links Considering Frequency Regulation Process 被引量:3
15
作者 Chengjin Ye Libang Guo +3 位作者 Yi Ding Ming Ding Peng Wang Lei Wang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第2期662-673,共12页
With various components and complex topologies,the applications of high-voltage direct current(HVDC)links bring new challenges to the interconnected power systems in the aspect of frequency security,which further infl... With various components and complex topologies,the applications of high-voltage direct current(HVDC)links bring new challenges to the interconnected power systems in the aspect of frequency security,which further influence their reliability performances.Consequently,this paper presents an approach to evaluate the impacts of the HVDC link outage on the reliability of interconnected power system considering the frequency regulation process during system contingencies.Firstly,a multi-state model of an HVDC link with different available loading rates(ALRs)is established based on its reliability network.Then,dynamic frequency response models of the interconnected power system are presented and integrated with a novel frequency regulation scheme enabled by the HVDC link.The proposed scheme exploits the temporary overload capability of normal converters to compensate for the imbalanced power during system contingencies.Moreover,it offers frequency support that enables the frequency regulation reserves of the sending-end and receiving-end power systems to be mutually available.Several indices are established to measure the system reliability based on the given models in terms of abnormal frequency duration,frequency deviation,and energy losses of the frequency regulation process during system contingencies.Finally,a modified two-area reliability test system(RTS)with an HVDC link is adopted to verify the proposed approach. 展开更多
关键词 RELIABILITY multi-state modeling interconnected power system high-voltage direct current(HVDC)link frequency regulation
原文传递
多工况下互连式油气悬架系统建模及特性研究 被引量:7
16
作者 张军伟 杨波 +2 位作者 李洪彪 陈思忠 李辰 《汽车工程学报》 2016年第3期212-222,共11页
采用模块化的建模方法,建立系统中各个部件的模型,通过对各部件数学模型的原理分析,确定各部件模型的输入和输出。根据油气悬架系统的连接关系将各个部件模型连接起来,得到多工况下的互连式油气悬架系统数学模型。基于所建立的互连式油... 采用模块化的建模方法,建立系统中各个部件的模型,通过对各部件数学模型的原理分析,确定各部件模型的输入和输出。根据油气悬架系统的连接关系将各个部件模型连接起来,得到多工况下的互连式油气悬架系统数学模型。基于所建立的互连式油气悬架模型,对多种典型工况下的系统特性进行分析,得到互连式油气悬架主要参数的变化特性,为互连式油气悬架整车控制算法研究提供理论基础。 展开更多
关键词 互连式 油气悬架 多工况 模块化建模 系统特性
下载PDF
Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection 被引量:7
17
作者 Lingjun Kong Zhiyu Ren +4 位作者 Nannan Zheng Shichao Du Jun Wu Jingling Tang Honggang Fu 《Nano Research》 SCIE EI CAS CSCD 2015年第2期469-480,共12页
Enzymeless hydrogen peroxide (H2O2) detection with high sensitivity and excellent selectivity is desirable for clinical diagnosis. Herein, one-dimensional Co3O4 nanowires have been successfully constructed on reduce... Enzymeless hydrogen peroxide (H2O2) detection with high sensitivity and excellent selectivity is desirable for clinical diagnosis. Herein, one-dimensional Co3O4 nanowires have been successfully constructed on reduced graphene oxide (rGO) via a simple hydrothermal procedure and subsequent thermal treatment. These Co3O4 nanowires, assembled by small nanoparticles, are interlaced with one another and make a spider web-like structure on rGO. The formation of Co3O4-rGO hybrids is attributed to the structure-directing and anchoring roles of DDA and GO, respectively. The resulting structure possesses abundant active sites, the oriented transmission of electrons, and unimpeded pathways for matter diffusion, which endows the Co3O4-rGO hybrids with excellent electrocatalytic performance. As a result, the obtained Co3O4-rGO hybrids can serve as an efficient electrochemical catalyst for H2O2 oxidation and high sensitivity detection. Under physiological conditions, the oxidation current of H2O2 varies linearly with respect to its concentration from 0.015 to 0.675 mM with a sensitivity of 1.14 mA.mM^-1.cm^-2 and a low detection limit of 2.4 μM. Furthermore, the low potential (-0.19 V) and the good selectivity make Co3O4-rGO hybrids suitable for monitoring H2O2 generated by liver cancer HepG2 cells. Therefore, it is promising as a non-enzymatic sensor to achieve real-time quantitative detection of H2O2 in biological applications. 展开更多
关键词 interconnected nanowires Co3O4-rGO hybrids synergistic effect ELECTROCATALYSIS enzymeless H2O2 detection
原文传递
Reinforced concrete-like Na_(3.5)V_(1.5)Mn_(0.5)(PO_(4))_(3)@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode 被引量:1
18
作者 Tao Long Peng Chen +11 位作者 Bin Feng Caili Yang Kairong Wang Yulei Wang Can Chen Yaping Wang Ruotong Li Meng Wu Minhuan Lan Wei Kong Pang Jian-Fang Wu Yuan-Li Ding 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期214-219,共6页
Realizing high-rate capability and high-efficiency utilization of polyanionic cathode materials is of great importance for practical sodium-ion batteries(SIBs) since they usually suffer from extremely low electronic c... Realizing high-rate capability and high-efficiency utilization of polyanionic cathode materials is of great importance for practical sodium-ion batteries(SIBs) since they usually suffer from extremely low electronic conductivity and limited ionic diffusion kinetics. Herein, taking Na_(3.5)V_(1.5)Mn_(0.5)(PO_(4))_(3)(NVMP) as an example, a reinforced concrete-like hierarchical and porous hybrid(NVMP@C@3DPG) built from 3D graphene(“rebar”) frameworks and in situ generated carbon coated NVMP(“concrete”) has been developed by a facile polymer assisted self-assembly and subsequent solid-state method. Such hybrids deliver superior rate capability(73.9 m Ah/g up to 20 C) and excellent cycling stability in a wide temperature range with a high specific capacity of 88.4 m Ah/g after 5000 cycles at 15 C at room temperature, and a high capacity retention of 97.1% after 500 cycles at 1 C(-20 ℃), and maintaining a high reversible capacity of 110.3 m Ah/g in full cell. This work offers a facile and efficient strategy to develop advanced polyanionic cathodes with high-efficiency utilization and 3D electron/ion transport systems. 展开更多
关键词 Sodium-ion battery Polyanionic cathode Hybrid structure interconnected structure Energy storage
原文传递
竖直互连小通道内流动沸腾传热强化机理分析
19
作者 周云龙 邵文斌 +1 位作者 李洪伟 胡中远 《中国电机工程学报》 EI CSCD 北大核心 2024年第12期4826-4836,I0018,共12页
为推动流动沸腾技术在燃料电池散热领域的应用,该文以R141b为工质,对不同流速下的并联直通道及互连小通道内流动沸腾情况进行三维瞬态数值模拟。利用换热系数、基底温度及综合换热因子等参数对比各结构的换热性能,并探究互连小通道的换... 为推动流动沸腾技术在燃料电池散热领域的应用,该文以R141b为工质,对不同流速下的并联直通道及互连小通道内流动沸腾情况进行三维瞬态数值模拟。利用换热系数、基底温度及综合换热因子等参数对比各结构的换热性能,并探究互连小通道的换热强化机理。研究表明:换热趋势随气泡行为呈周期性变化,气泡脱离时的换热效果最佳;由连通口引发的二次流促进热量传递与壁温升高,使通道可提前2 ms满足成核条件,且气泡在10^(-4) m/s以上的二次流速作用下率先脱离;五连通通道的换热系数较并联直通道可提升19.6%~23.3%,继续增加连通口数,换热系数的相对增长率均不足3.5%;涡结构使压降随连通口数增加而增大,且增势并不减弱,八连通通道的压降较并联直通道增加29.5%~42%。可见,二次流在影响气泡行为、强化换热的同时也带来压力损失,综合换热性能与连通口数目不成正相关。 展开更多
关键词 连通式 小通道 流动沸腾 强化机理 数值模拟
下载PDF
Insights into Nano-and Micro-Structured Scaffolds for Advanced Electrochemical Energy Storage
20
作者 Jiajia Qiu Yu Duan +4 位作者 Shaoyuan Li Huaping Zhao Wenhui Ma Weidong Shi Yong Lei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期187-230,共44页
Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical... Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy stor-age devices at all technology readiness levels.Due to various challenging issues,especially limited stability,nano-and micro-structured(NMS)electrodes undergo fast electrochemical performance degradation.The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement,even though it only occupies comple-mentary and facilitating components for the main mechanism.However,extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies.This review will aim at highlighting these NMS scaffold design strategies,summariz-ing their corresponding strengths and challenges,and thereby outlining the potential solutions to resolve these challenges,design principles,and key perspectives for future research in this field.Therefore,this review will be one of the earliest reviews from this viewpoint. 展开更多
关键词 Nano-and micro-structured interconnected porous Scaffolds Electrode design Electrochemical energy storage
下载PDF
上一页 1 2 160 下一页 到第
使用帮助 返回顶部