Nowadays, more and more attentions are paid to electromagnetic incremental forming(EMIF), especially for a part with a large-scale size, e.g., an integral panel with stiffened ribs. In this work, the bending of a pa...Nowadays, more and more attentions are paid to electromagnetic incremental forming(EMIF), especially for a part with a large-scale size, e.g., an integral panel with stiffened ribs. In this work, the bending of a panel into a double-curvature profile via EMIF is carried out experimentally and evaluated by comparing the formed profile with the desired profile. During the process,discharges at four positions along different discharge paths are designed. The effects of forming parameters on the die-fittingness of the workpiece are discussed, for which two evaluation indices are used to judge forming results. The results show that a discharge voltage in an incremental mode is helpful to improve the fittingness and avoid the collision rebound against the die at the same time.Discharging at the diagonal positions with the ‘‘X" discharge path exhibits the minimal shape deviation and the best forming uniformity. On the contrary, discharging at the parallel positions with the ‘‘Z" discharge path obtains the worst forming quality. Overlap of the coil at different positions should be given during EMIF; however, a lower overlap rate of the coil helps improve the forming quality. The results obtained in this work are useful for forming integral panels with stiffened ribs via the EMIF process.展开更多
In order to design the press bend forming path of aircraft integral panels,a novel optimization method was proposed, which integrates FEM equivalent model based on previous study,the artificial neural network response...In order to design the press bend forming path of aircraft integral panels,a novel optimization method was proposed, which integrates FEM equivalent model based on previous study,the artificial neural network response surface,and the genetic algorithm.First,a multi-step press bend forming FEM equivalent model was established,with which the FEM experiments designed with Taguchi method were performed.Then,the BP neural network response surface was developed with the sample data from the FEM experiments.Furthermore,genetic algorithm was applied with the neural network response surface as the objective function. Finally,verification was carried out on a simple curvature grid-type stiffened panel.The forming error of the panel formed with the optimal path is only 0.098 39 and the calculating efficiency has been improved by 77%.Therefore,this novel optimization method is quite efficient and indispensable for the press bend forming path designing.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars of China (No.51625505)the Key Program Project of the Joint Fund of Astronomy and National Natural Science Foundation of China (No.U1537203)the National Key Basic Research Program of China (No.2011CB012804)
文摘Nowadays, more and more attentions are paid to electromagnetic incremental forming(EMIF), especially for a part with a large-scale size, e.g., an integral panel with stiffened ribs. In this work, the bending of a panel into a double-curvature profile via EMIF is carried out experimentally and evaluated by comparing the formed profile with the desired profile. During the process,discharges at four positions along different discharge paths are designed. The effects of forming parameters on the die-fittingness of the workpiece are discussed, for which two evaluation indices are used to judge forming results. The results show that a discharge voltage in an incremental mode is helpful to improve the fittingness and avoid the collision rebound against the die at the same time.Discharging at the diagonal positions with the ‘‘X" discharge path exhibits the minimal shape deviation and the best forming uniformity. On the contrary, discharging at the parallel positions with the ‘‘Z" discharge path obtains the worst forming quality. Overlap of the coil at different positions should be given during EMIF; however, a lower overlap rate of the coil helps improve the forming quality. The results obtained in this work are useful for forming integral panels with stiffened ribs via the EMIF process.
基金Project(20091102110021)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘In order to design the press bend forming path of aircraft integral panels,a novel optimization method was proposed, which integrates FEM equivalent model based on previous study,the artificial neural network response surface,and the genetic algorithm.First,a multi-step press bend forming FEM equivalent model was established,with which the FEM experiments designed with Taguchi method were performed.Then,the BP neural network response surface was developed with the sample data from the FEM experiments.Furthermore,genetic algorithm was applied with the neural network response surface as the objective function. Finally,verification was carried out on a simple curvature grid-type stiffened panel.The forming error of the panel formed with the optimal path is only 0.098 39 and the calculating efficiency has been improved by 77%.Therefore,this novel optimization method is quite efficient and indispensable for the press bend forming path designing.