This paper is concerned with the wave energy input into the Ekman layer, based on 3 observational facts that surface waves could significantly affect the profile of the Ekman layer. Under the assumption of constant ve...This paper is concerned with the wave energy input into the Ekman layer, based on 3 observational facts that surface waves could significantly affect the profile of the Ekman layer. Under the assumption of constant vertical diffusivity, the analytical form of wave energy input into the Ekman layer is derived. Analysis of the energy balance shows that the energy input to the Ekman layer through the wind stress and the interaction of the Stokes-drift with planetary vorticity can be divided into two kinds. One is the wind energy input, and the other is the wave energy input which is dependent on wind speed, wave characteristics and the wind direction relative to the wave direction. Estimates of wave energy input show that wave energy input can be up to 10% in high-latitude and high-wind speed areas and higher than 20% in the Antarctic Circumpolar Current, compared with the wind energy input into the classical Ekman layer. Results of this paper are of significance to the study of wave-induced large scale effects.展开更多
The performance of uplink distributed massive multiple-input multiple-output(MIMO)systems with crosslayer design(CLD) is investigated over Rayleigh fading channel, which combines the discrete rate adaptive modulation ...The performance of uplink distributed massive multiple-input multiple-output(MIMO)systems with crosslayer design(CLD) is investigated over Rayleigh fading channel, which combines the discrete rate adaptive modulation with truncated automatic repeat request. By means of the performance analysis, the closed-form expressions of average packet error rate(APER)and overall average spectral efficiency(ASE)of distributed massive MIMO systems with CLD are derived based on the conditional probability density function of each user’s approximate effective signal-to-noise ratio(SNR)and the switching thresholds under the target packet loss rate(PLR)constraint.With these results,using the approximation of complementary error functions,the approximate APER and overall ASE are also deduced. Simulation results illustrate that the obtained theoretical ASE and APER can match the corresponding simulations well. Besides,the target PLR requirement is satisfied,and the distributed massive MIMO systems offer an obvious performance gain over the co-located massive MIMO systems.展开更多
We propose a medium access control(MAC) protocol for uplink transmissions in wireless local area networks(WLANs),where both stations and access points(APs) are equipped with multiple antennas. The protocol solves some...We propose a medium access control(MAC) protocol for uplink transmissions in wireless local area networks(WLANs),where both stations and access points(APs) are equipped with multiple antennas. The protocol solves some common problems in utilizing multiple input multiple output(MIMO) under the 802.11 protocol,e.g.,how to deploy preamble(training sequence) used for channel estimation and how to enable simultaneous data transmissions,and facilitates two simultaneous uplink data transmissions via a cross-layer approach. Furthermore,we develop a 3D discrete-time Markov model to analyze the per-formance of the proposed WLAN scheme. The analytical results are verified by simulation,and numerical results show that the system throughput can be significantly improved by our proposed scheme as compared with conventional schemes.展开更多
基金the National Basic Research Program of China (973 program) (Grant Nos. 2005CB422302 and 2007CB411806)the Major Project of the National Natural Science Foundation of China (Grant No. 40490263)
文摘This paper is concerned with the wave energy input into the Ekman layer, based on 3 observational facts that surface waves could significantly affect the profile of the Ekman layer. Under the assumption of constant vertical diffusivity, the analytical form of wave energy input into the Ekman layer is derived. Analysis of the energy balance shows that the energy input to the Ekman layer through the wind stress and the interaction of the Stokes-drift with planetary vorticity can be divided into two kinds. One is the wind energy input, and the other is the wave energy input which is dependent on wind speed, wave characteristics and the wind direction relative to the wave direction. Estimates of wave energy input show that wave energy input can be up to 10% in high-latitude and high-wind speed areas and higher than 20% in the Antarctic Circumpolar Current, compared with the wind energy input into the classical Ekman layer. Results of this paper are of significance to the study of wave-induced large scale effects.
基金supported in part by the National Natural Science Foundation of China (No. 61971220)the Fundamental Research Funds for the Central Universities of Nanjing University of Aeronautics and Astronautics(NUAA)(No.kfjj20200414)Natural Science Foundation of Jiangsu Province in China (No. BK20181289)。
文摘The performance of uplink distributed massive multiple-input multiple-output(MIMO)systems with crosslayer design(CLD) is investigated over Rayleigh fading channel, which combines the discrete rate adaptive modulation with truncated automatic repeat request. By means of the performance analysis, the closed-form expressions of average packet error rate(APER)and overall average spectral efficiency(ASE)of distributed massive MIMO systems with CLD are derived based on the conditional probability density function of each user’s approximate effective signal-to-noise ratio(SNR)and the switching thresholds under the target packet loss rate(PLR)constraint.With these results,using the approximation of complementary error functions,the approximate APER and overall ASE are also deduced. Simulation results illustrate that the obtained theoretical ASE and APER can match the corresponding simulations well. Besides,the target PLR requirement is satisfied,and the distributed massive MIMO systems offer an obvious performance gain over the co-located massive MIMO systems.
基金supported by the National Natural Science Foundation of China (No. 60832008)the Research Grants Council Joint Research Scheme National Natural Science Foundation of China (No. 60731160013)
文摘We propose a medium access control(MAC) protocol for uplink transmissions in wireless local area networks(WLANs),where both stations and access points(APs) are equipped with multiple antennas. The protocol solves some common problems in utilizing multiple input multiple output(MIMO) under the 802.11 protocol,e.g.,how to deploy preamble(training sequence) used for channel estimation and how to enable simultaneous data transmissions,and facilitates two simultaneous uplink data transmissions via a cross-layer approach. Furthermore,we develop a 3D discrete-time Markov model to analyze the per-formance of the proposed WLAN scheme. The analytical results are verified by simulation,and numerical results show that the system throughput can be significantly improved by our proposed scheme as compared with conventional schemes.