Fuel tank inerting technologies are able to reduce the fire risk by injection of inert gas into the ullage or fuel, the former called ullage washing and the latter fuel scrubbing. The Green On-Board Inert Gas Generati...Fuel tank inerting technologies are able to reduce the fire risk by injection of inert gas into the ullage or fuel, the former called ullage washing and the latter fuel scrubbing. The Green On-Board Inert Gas Generation System(GOBIGGS) is a novel technology based on flameless catalytic combustion, and owning to its simple structure and high inerting efficiency, it has received a lot of attentions. The inert gas in the GOBIGGS is mainly comprised of CO2, N2, and O2(hereinafter, Mixed Inert Gas(MIG)), while that in the On-Board Inert Gas Generation System(OBIGGS), which is one of the most widely used fuel tank inerting technologies, is NitrogenEnriched Air(NEA). The solubility of CO2 is nearly 20 times higher than that of N2 in jet fuels,so the inerting capability and performance are definitely disparate if the inert gas is selected as NEA or MIG. An inerting test bench was constructed to compare the inerting capabilities between NEA and MIG. Experimental results reveal that, if ullage washing is adopted, the variations of oxygen concentrations on the ullage and in the fuel are nearly identical no matter the inert gas is NEA or MIG. However, the ullage and dissolved oxygen concentrations of MIG scrubbing are always higher than those of NEA scrubbing.展开更多
Intrinsic stresses of carbon films deposited by direct current (DC) magnetron sputtering were investigated. The bombardments of energetic particles during the growth of films were considered to be the main reason fo...Intrinsic stresses of carbon films deposited by direct current (DC) magnetron sputtering were investigated. The bombardments of energetic particles during the growth of films were considered to be the main reason for compressive intrinsic stresses. The values of intrinsic stresses were determined by measuring the radius of curvature of substrates before and after film deposition. By varying argon pressure and target-substrate distance, energies of neutral carbon atoms impinging on the growing films were optimized to control the intrinsic stresses level. The stress evolution in carbon films as a function of film thickness was investigated and a void-related stress relief mechanism was proposed to interpret this evolution.展开更多
The 5th -23sd high-order harmonics generation in rare gases in static gas target with 120-fs, 85-mJ/pulse, 10-Hz laser system was investigated. Compared with the traditional gas target, static gas target is simple to ...The 5th -23sd high-order harmonics generation in rare gases in static gas target with 120-fs, 85-mJ/pulse, 10-Hz laser system was investigated. Compared with the traditional gas target, static gas target is simple to be used in experiment, and the experimental parameters can be easily controlled. The effects on high-order harmonics due to laser intensities (energy), polarization, gas densities, confocal parameter, and phase mismatch were studied in this paper.展开更多
基金supported by Funding of Jiangsu Innovation Program for Graduate Education of China (No.KYLX15_0231)Postgraduate Research & Practice Innovation Program of Jiangsu Province of China (No.KYCX17_0279)+1 种基金the Fundamental Research Funds for the Central Universities,Aviation Industry Corporation of China Technology Innovation Fund for Fundamental Research (No.2014D60931R)Funding of Ministry of Industry and Information Technology for Civil Aircraft
文摘Fuel tank inerting technologies are able to reduce the fire risk by injection of inert gas into the ullage or fuel, the former called ullage washing and the latter fuel scrubbing. The Green On-Board Inert Gas Generation System(GOBIGGS) is a novel technology based on flameless catalytic combustion, and owning to its simple structure and high inerting efficiency, it has received a lot of attentions. The inert gas in the GOBIGGS is mainly comprised of CO2, N2, and O2(hereinafter, Mixed Inert Gas(MIG)), while that in the On-Board Inert Gas Generation System(OBIGGS), which is one of the most widely used fuel tank inerting technologies, is NitrogenEnriched Air(NEA). The solubility of CO2 is nearly 20 times higher than that of N2 in jet fuels,so the inerting capability and performance are definitely disparate if the inert gas is selected as NEA or MIG. An inerting test bench was constructed to compare the inerting capabilities between NEA and MIG. Experimental results reveal that, if ullage washing is adopted, the variations of oxygen concentrations on the ullage and in the fuel are nearly identical no matter the inert gas is NEA or MIG. However, the ullage and dissolved oxygen concentrations of MIG scrubbing are always higher than those of NEA scrubbing.
基金the National Natural Sci-ence Foundation of China (No.10435050,10675092,and 10675091)the"863"Project Plan (No.2006AA12Z139)the Program for New Century Excellent Talents in University (No.NCET-04-0376).
文摘Intrinsic stresses of carbon films deposited by direct current (DC) magnetron sputtering were investigated. The bombardments of energetic particles during the growth of films were considered to be the main reason for compressive intrinsic stresses. The values of intrinsic stresses were determined by measuring the radius of curvature of substrates before and after film deposition. By varying argon pressure and target-substrate distance, energies of neutral carbon atoms impinging on the growing films were optimized to control the intrinsic stresses level. The stress evolution in carbon films as a function of film thickness was investigated and a void-related stress relief mechanism was proposed to interpret this evolution.
基金This work was supported by the National Technology Project of China under Grant No. 863-804-7.
文摘The 5th -23sd high-order harmonics generation in rare gases in static gas target with 120-fs, 85-mJ/pulse, 10-Hz laser system was investigated. Compared with the traditional gas target, static gas target is simple to be used in experiment, and the experimental parameters can be easily controlled. The effects on high-order harmonics due to laser intensities (energy), polarization, gas densities, confocal parameter, and phase mismatch were studied in this paper.