The monthly and annual mean freshwater, heat and salt transport through the openboundaries of the South and East China Seas derived from a variable-grid global ocean circulation model is reported. The model has 1/6 re...The monthly and annual mean freshwater, heat and salt transport through the openboundaries of the South and East China Seas derived from a variable-grid global ocean circulation model is reported. The model has 1/6 resolution for the seas adjacent to China and 3 resolution for the global ocean. The model results are in fairly good agreement with the existing estimates based on measurements. The computation shows that the flows passing through the South China Sea contribute volume, heat and salt transport of 5.3 Sv, 0.57 PW and 184 Ggs-1, respectively (about 1/4) to the Indonesian Throughflow, indicating that the South China Sea is an important pathway of the Pacific to Indian Ocean throughflow. The volume, heat and salt transport of the Kuroshio in the East China Sea is 25.6 Sv, 2.32 PW and 894 Ggs-1, respectively. Less than 1/4 of this transport passes through the passage between Iriomote and Okinawa. The calculation of heat balance indicates that the South China Sea absorbs net heat flux from the sun and atmosphere with a rate of 0.08 PW, while the atmosphere gains net heat flux from the Baohai, Yellow and East China Seas with a rate of 0.05 PW.展开更多
Besides the Indonesian throughflow(ITF), the South China Sea throughflow(SCSTF) also contributes to the water transport from the Pacific to the Indian Ocean. However, this South China Sea(SCS) branch at the Karimata S...Besides the Indonesian throughflow(ITF), the South China Sea throughflow(SCSTF) also contributes to the water transport from the Pacific to the Indian Ocean. However, this South China Sea(SCS) branch at the Karimata Strait is poorly observed until 2007, even though its importance has been suggested by numerical studies for decades. In this paper, we review the nearly 10-year field measurement in the Karimata Strait by the execution of the projects of "SCS-Indonesian Seas Transport/Exchange(SITE) and Impacts on Seasonal Fish Migration" and "The Transport, Internal Waves and Mixing in the Indonesian Throughflow regions(TIMIT) and Impacts on Marine Ecosystem", which extend the observations from the western Indonesian seas to the east to include the main channels of the ITF, is introduced. Some major achievements from these projects are summarized.展开更多
A quasi-global eddy permitting oceanic GCM, LICOM1.0, is run with the forcing of ERA40 daily wind stress from 1958 to 2001. The modelled Indonesian Throughflow (ITF) is reasonable in the aspects of both its water sour...A quasi-global eddy permitting oceanic GCM, LICOM1.0, is run with the forcing of ERA40 daily wind stress from 1958 to 2001. The modelled Indonesian Throughflow (ITF) is reasonable in the aspects of both its water source and major pathways. Compared with the observation, the simulated annual mean and seasonal cycle of the ITF transport are fairly realistic. The interannual variation of the tropical Pacific Ocean plays a more important role in the interannual variability of the ITF transport. The relationship between the ITF and the Indian Ocean Dipole (IOD) also reflects the influence of ENSO. However, the relationship between the ITF transport and the interannual anomalies in the Pacific and Indian Oceans vary with time. During some years, (e.g., 1994), the effect of a strong IOD on the ITF transport is more than that from ENSO.展开更多
In order to quantitatively estimate the volume and property transports between the South China Sea and Indonesian Seas via the Karimata Strait, two trawi-resistant bottom mounts, with ADCPs embedded, were deployed in ...In order to quantitatively estimate the volume and property transports between the South China Sea and Indonesian Seas via the Karimata Strait, two trawi-resistant bottom mounts, with ADCPs embedded, were deployed in the strait to measure the velocity profile as part of the South China Sea-Indonesian Seas trans- port/exchange (SITE) program. A pair of surface and bottom acoustic modems was employed to transfer the measured velocity without recovering the mooring. The advantage and problems of the instruments in this field work are reported and discussed. The field observations confirm the existence of the South Chi- na Sea branch of Indonesian throughflow via the Karimata Strait with a stronger southward flow in boreal winter and weaker southward bottom flow in boreal summer, beneath the upper layer northward (reversal) flow. The estimate of the averaged volume, heat and freshwater transports from December 2007 to March 2008 (winter) is (-2.7±1.1)×10^6 m^3/s, (-0.30±0.11) PW, 2008 (summer) is (1.2±0.6)×10^6 m^3/s, (0.14±0.03) PW, (-0.18±0.07) × 106 m3/s and from May to September (0.12±0.04)×10^6 m^3/s and for the entire record from December 2007 to October 2008 is (-0.5±1.9)×10^6 m^3/s, (-0.05±0.22) PW, (-0.01±0.15)×10^6 m^3/s (nega- tive/positive represents southward/northward transport), respectively. The existence of southward bottom flow in boreal summer implies that the downward sea surface slope from north to south as found by Fang et al. (2010) for winter is a year-round phenomenon.展开更多
Changes in the Indonesian Throughflow (ITF) and the South China Sea throughflow-measured by the Luzon Strait Transport (LST)-associated with the 1976/77 regime shift are analyzed using the Island Rule theory and t...Changes in the Indonesian Throughflow (ITF) and the South China Sea throughflow-measured by the Luzon Strait Transport (LST)-associated with the 1976/77 regime shift are analyzed using the Island Rule theory and the Simple Ocean Data Assimilation dataset. Results show that LST increased but ITF transport decreased after 1975. Such changes were induced by variations in wind stress associated with the regime shift. The strengthening of the easterly wind anomaly east of the Luzon Strait played an important role in the increase of LST after 1975, while the westerly wind anomaly in the equatorial Pacific contributed significantly to the decrease in ITF transport after 1975; accounting for 53% of the change. After 1975, the Kuroshio Current strengthened and the Mindanao Current weakened in response to a decrease in the total transport of the North Equatorial Current. Both the North Equatorial Countercurrent and the South Equatorial Current weakened after 1975, and an anomalous cyclonic circulation in the western equatorial Pacific prevented the tropical Pacific water from entering the Indian Ocean directly.展开更多
Using a global OGCM and its relevant coupledocean-atmosphere GCM with the contemporary, 6 MaBPand 14 MaBP oceanic topography, respectively, a series ofnumerical experiments are implemented in order to investi-gate the...Using a global OGCM and its relevant coupledocean-atmosphere GCM with the contemporary, 6 MaBPand 14 MaBP oceanic topography, respectively, a series ofnumerical experiments are implemented in order to investi-gate the effect of the north shift of Australian continent onthe tropical oceanic circulation, especially the formation ofthe western Pacific warm pool. The numerical experimentsof the individual OGCM forced by the modern atmosphericcirculation indicate that the closure of Indonesian passageresults in warming in the tropical Pacific Ocean and coolingin the tropical Indian Ocean; furthermore, it also results inchange in source of the Indonesian Through Flow (ITF) wa-ter, e.g. ITF mainly originates from the south Pacific at 14MaBP, but it mainly originates from the north Pacific now.The coupled model shows similar results as the individualOGCM qualitatively.展开更多
The role of the Indonesian Throughflow (ITF) in the influence of the Indian Ocean Dipole (IOD) on ENSO is investigated using version 2 of the Parallel Ocean Program (POP2) ocean general circulation model. We dem...The role of the Indonesian Throughflow (ITF) in the influence of the Indian Ocean Dipole (IOD) on ENSO is investigated using version 2 of the Parallel Ocean Program (POP2) ocean general circulation model. We demonstrate the results through sensitivity experiments on both positive and negative IOD events from observations and coupled general circulation model simulations. By shutting down the atmospheric bridge while maintaining the tropical oceanic channel, the IOD forcing is shown to influence the ENSO event in the following year, and the role of the ITF is emphasized. During positive IOD events, negative sea surface height anomalies (SSHAs) occur in the eastern Indian Ocean, indicating the existence of upwelling. These upwelling anomalies pass through the Indonesian seas and enter the western tropical Pacific, resulting in cold anomalies there. These cold temperature anomalies further propagate to the eastern equatorial Pacific, and ultimately induce a La Nifia- like mode in the following year. In contrast, during negative IOD events, positive SSHAs are established in the eastern Indian Ocean, leading to downwelling anomalies that can also propagate into the subsurface of the western Pacific Ocean and travel further eastward. These downwelling anomalies induce negative ITF transport anomalies, and an E1 Nifio-like mode in the tropical eastern Pacific Ocean that persists into the following year. The effects of negative and positive IOD events on ENSO via the ITF are symmetric. Finally, we also estimate the contribution of IOD forcing in explaining the Pacific variability associated with ENSO via ITE展开更多
BACKGROUND Recently, gut microbiota has been associated with various diseases other than intestinal disease. Thus, there has been rapid growth in the study of gut microbiota. Considering the numerous factors influenci...BACKGROUND Recently, gut microbiota has been associated with various diseases other than intestinal disease. Thus, there has been rapid growth in the study of gut microbiota. Considering the numerous factors influencing gut microbiota such as age, diet, etc., area-based research is required. Indonesia has numerous different tribes and each of these tribes have different lifestyles. Hence, it is expected that each tribe has a specific gut microbiota. A deeper insight into the composition of gut microbiota can be used to determine the condition of gut microbiota in Indonesians and to consider which treatment may be suitable and effective to improve health status.AIM To investigate the gut microbiota of Indonesian subjects represented by Javanese and Balinese tribes by analyzing fecal samples.METHODS Fecal samples were collected from a total of 80 individuals with 20 in each of the young groups ranging from 25-45 years and the elderly group aged 70 years or more from two different regions, Yogyakarta and Bali. Fecal sample collection was performed at the end of the assessment period(day 14 ± 1 d) during which time the subjects were not allowed to consume probiotic or antibiotic products.The quantification of various Clostridium subgroups, Lactobacillus subgroups,Enterococcus, Streptococcus, Staphylococcus, Bacteroides fragilis group and Prevotella,Bifidobacterium and Atopobium cluster, Enterobacteriaceae and Pseudomonas was performed using the Yakult intestinal flora-scan(YIF-SCAN).RESULTS The bacterial population in younger subjects' feces was higher than that in the elderly population, with a total of approximately 10.0 – 10.6 log10 bacterial cells/g feces. The most abundant bacteria in all groups were Clostridium, followed by Prevotella, Atopobium, Bifidobacterium and Bacteroides. In the elderly, an increase in Enterobacteriaceae, Coliform and Escherichia coli was found. In terms of bacterial counts in Yogyakarta, total bacteria, Clostridium coccoides(C. coccoides) group,Bifidobacterium, Prevotella, Lactobacil展开更多
The Indonesian Throughflow (ITF) links upper ocean waters of the west Pacific and Indian Ocean, modulates heat and fresh water budgets between these oceans, and in turn plays an important role in global climate chan...The Indonesian Throughflow (ITF) links upper ocean waters of the west Pacific and Indian Ocean, modulates heat and fresh water budgets between these oceans, and in turn plays an important role in global climate change. The climatic phenomena such as the East Asian monsoon and E1 Nifio-Southern Oscillation (ENSO) exert a strong influence on flux, water properties and vertical stratification of the ITF. This work studied sediments of Core SO 18462 that was retrieved from the outflow side of the ITF in the Timor Sea in order to investigate response of the ITF to monsoon and ENSO activities since the last glacial. Based on Mg/Ca ratios and oxygen isotopes in shells of planktonic foraminiferal surface and thermocline species, seawater temperatures and salinity of both surface and thermocline waters and vertical thermal gradient of the ITF outflow were recon- structed. Records of Core SO18462 were then compared with those from Core 3cBX that was recovered from the western Pa- cific warm pool (WPWP). The results displayed that similar surface waters occurred in the Timor Sea and the WPWP during the last glacial. Since -16 ka, an apparent difference in surface waters between these two regions exists in salinity, indicated by much fresher waters in the Timor Sea than in the WPWP. In contrast, there is little change in difference of sea surface temper- atures (SSTs). With regard to thermocline temperature (TT), it increased until -11.5 ka since the last glacial, and then re- mained an overall unchanged trend in the WPWP but continuously decreased in the Timor Sea towards the late Holocene. Since ~6 ka, thermocline waters have tended to be close to each other in between the Timor Sea and the WPWP. It is indicated that intensified precipitation due to East Asian monsoon and possible ENSO cold phase significantly freshened surface waters over the Indonesian Seas, impeding the ITF surface flow and in turn having enhanced thermocline flow during the Holocene. Consequently, thermocline water of the ITF outflo展开更多
In 2019, Indonesia was ranked second with 619,840.03 carbon emissions, after India. Therefore, the Indonesian government issued a zero emission plan in 2022 and encouraged Indonesians to purchase electric vehicles, st...In 2019, Indonesia was ranked second with 619,840.03 carbon emissions, after India. Therefore, the Indonesian government issued a zero emission plan in 2022 and encouraged Indonesians to purchase electric vehicles, striving to achieve zero emissions by 2060. Facing the huge potential market for the development of electric vehicles in Indonesia, the Chinese brand Wuling took this opportunity to launch its first electric vehicle, Wuling Air EV, in Indonesia. This study aims to analyze the influence of the brand image of Wuling electric vehicles, brand awareness, country of origin and perceived risk on the purchase intention of Indonesian consumers. Data collection in this study was carried out through offline and online questionnaires which were distributed to 150 respondents who met the research criteria in the JABODETABEK area, and they all owned cars and had driving experience. Partial Least Squares-Structural Equation Modeling (PLS-SEM) was adopted for data analysis. The results of this study indicate that country of origin, perceived risk, and brand image have a significant effect on consumer purchase intention. In addition, perceived risk also has a significant positive impact on brand image. However, the influence of country of origin and brand awareness has no significant effect on brand image.展开更多
The Indonesian Archipelago provides important heat transport pathways of the Western Pacific Warm Pool between the northern Indian Ocean and western equatorial Pacific Ocean, that exert important impacts on global cli...The Indonesian Archipelago provides important heat transport pathways of the Western Pacific Warm Pool between the northern Indian Ocean and western equatorial Pacific Ocean, that exert important impacts on global climate change. This study investigated AMS 14C, δ18O, planktonic foraminifer assemblages and sedimentation rates in three piston cores collected in the Indonesian Archipelago. The results indicate that changes in the Indonesian Archipelago heat transport pathways were phase characteristic and in steps during the last deglaciation. In the deglaciation Termination IA, at about 12.5 kaBP, sea level rose rapidly in a short time period, and Makassar and Lombok straits widened suddenly for warm and fresh water from the Pacific to pour into the Java Sea and eastern Indian Ocean. During the Termination IB, about 9.5 kaBP, sea level rose rapidly again, and the South China Sea (SCS) started to connect with the Java Sea. With monsoon actions, a large amount of fresh water from the SCS shelf area flew展开更多
Lag correlations of sea surface temperature anomalies (SSTAs), sea surface height anomalies (SSHAs), subsurface temperature anomalies, and surface zonal wind anomalies (SZWAs) produced by the Flexible Global Oce...Lag correlations of sea surface temperature anomalies (SSTAs), sea surface height anomalies (SSHAs), subsurface temperature anomalies, and surface zonal wind anomalies (SZWAs) produced by the Flexible Global Ocean-Atmosphere-Land System modeh Grid-point Version 2 (FGOALS-g2) are analyzed and com- pared with observations. The insignificant, albeit positive, lag correlations between the SSTAs in the south- eastern tropical Indian Ocean (STIO) in fall and the SSTAs in the central-eastern Pacific cold tongue in the following summer through fall are found to be not in agreement with the observational analysis. The model, however, does reproduce the significant lag correlations between tile SSHAs in the STIO in fall and those in the cold tongue at the one-year time lag in the observations. These, along with the significant lag correlations between the SSTAs in the STIO in fall and the subsurface temperature anomalies in the equatorial Pacific vertical section in the following year, suggest that the Indonesian Throughflow plays an important role in propagating the Indian Ocean anomalies into the equatorial Pacific Ocean. Analyses of the interannual anomalies of the Indonesian Throughflow transport suggest that the FGOALS-g2 climate system simulates, but underestimates, the oceanic channel dynamics between the Indian and Pacific Oceans. FGOALS-g2 is shown to produce lag correlations between the SZWAs over the western equatorial Pacific in fall and the cold tongue SSTAs at the one-year time lag that are too strong to be realistic in comparison with observations. The analyses suggest that the atmospheric bridge over the Indo-Pacific Ocean is overestimated in the FGOALS-g2 coupled climate model.展开更多
The objective of this study is to model the mean and seasonal mass transportof the Pacific to Indian O-cean throughflow using variable-grid global Ocean General CirculationModel (OGCM) with fine grid (1°/6) cover...The objective of this study is to model the mean and seasonal mass transportof the Pacific to Indian O-cean throughflow using variable-grid global Ocean General CirculationModel (OGCM) with fine grid (1°/6) covering the area from 20°S to 60°N and from 98°E to 156°E.The computations show that Indonesian Throughflow (ITF) mass transport, computed as a sum ofthrough-strait transport, has maximum transport in Sept. (17. 5Sv) and minimum transport in Jan. (9.5Sv). The annual mean ITF transport amounts to 14. 5Sv. Twenty-two percent of this transport passesthrough Lombok Strait. Sixty-five percent of this transport passes through Timor Passage.Semi-annual variability is apparent in Lombok and Ombai Straits while annual variability is apparentin Timor Passage.展开更多
On the basis of Argo data and historic temperature/salinity data from the World Ocean Database 2001 ( WOD01 ), origins and spreading pathways of the subsurface and intermediate water masses in the Indonesian Through...On the basis of Argo data and historic temperature/salinity data from the World Ocean Database 2001 ( WOD01 ), origins and spreading pathways of the subsurface and intermediate water masses in the Indonesian Throughflow (ITF) region were discussed by analyzing distributions of salinity on representative isopyenal layers. Results were shown that, subsurface water mostly comes from the North Pacific Ocean while the intermediate water originates from both the North and South Pacific Ocean, even possibly from the Indian Ocean. Spreading through the Sulawesi Sea, the Makassar Strait, and file Flores Sea, the North Pacific subsurface water and the North Pacific Intermediate water dominate the western part of the Indonesian Archipelago. Furthermore as the depth increases, the features of the North Pacific sourced water masses become more obvious. In the eastern part of the waters, high sa- linity South Pacific subsurface water is blocked by a strong salinity front between Halmahera and New Guinea. Intermediate water in the eastern interior region owns salinity higher than the North Pacific intermediate water and the antarctic intermediate water ( AAIW), possibly coming from the vertical mixing between subsurface water and the AAIW from the Pacific Ocean, and possibly coming from the northward extending of the AAIW from the Indian Ocean as well.展开更多
So far, large uncertainties of the Indonesian throughflow(ITF) reside in the eastern Indonesian seas, such as the Maluku Sea and the Halmahera Sea. In this study, the water sources of the Maluku Sea and the Halmahera ...So far, large uncertainties of the Indonesian throughflow(ITF) reside in the eastern Indonesian seas, such as the Maluku Sea and the Halmahera Sea. In this study, the water sources of the Maluku Sea and the Halmahera Sea are diagnosed at seasonal and interannual timescales and at different vertical layers, using the state-of-the-art simulations of the Ocean General Circulation Model(OGCM) for Earth Simulator(OFES). Asian monsoon leaves clear seasonal footprints on the eastern Indonesian seas. Consequently, the subsurface waters(around 24.5σ_θ and at ~150 m) in both the Maluku Sea and the Halmahera Sea stem from the South Pacific(SP) during winter monsoon, but during summer monsoon the Maluku Sea is from the North Pacific(NP), and the Halmahera Sea is a mixture of waters originating from the NP and the SP. The monsoon impact decreases with depth, so that in the Maluku Sea, the intermediate water(around 26.8σ_θ and at ~480 m) is always from the northern Banda Sea and the Halmahera Sea water is mainly from the SP in winter and the Banda Sea in summer. The deep waters(around27.2σ_θ and at ~1 040 m) in both seas are from the SP, with weak seasonal variability. At the interannual timescale,the subsurface water in the Maluku Sea originates from the NP/SP during El Ni?o/La Ni?a, while the subsurface water in the Halmahera Sea always originates from the SP. Similar to the seasonal variability, the intermediate water in Maluku Sea mainly comes from the Banda Sea and the Halmahera Sea always originates from the SP. The deep waters in both seas are from the SP. Our findings are helpful for drawing a comprehensive picture of the water properties in the Indonesian seas and will contribute to a better understanding of the ocean-atmosphere interaction over the maritime continent.展开更多
基金the National Natural Science Foundation of China (Grant No. 49876010) the Major State Basic Research Program (Grant No. G1999043808)+1 种基金 the National Key Science and Technology Pro-ject (Grant No. 97-926-05-01) Youth Fund of the National 863 Project (G
文摘The monthly and annual mean freshwater, heat and salt transport through the openboundaries of the South and East China Seas derived from a variable-grid global ocean circulation model is reported. The model has 1/6 resolution for the seas adjacent to China and 3 resolution for the global ocean. The model results are in fairly good agreement with the existing estimates based on measurements. The computation shows that the flows passing through the South China Sea contribute volume, heat and salt transport of 5.3 Sv, 0.57 PW and 184 Ggs-1, respectively (about 1/4) to the Indonesian Throughflow, indicating that the South China Sea is an important pathway of the Pacific to Indian Ocean throughflow. The volume, heat and salt transport of the Kuroshio in the East China Sea is 25.6 Sv, 2.32 PW and 894 Ggs-1, respectively. Less than 1/4 of this transport passes through the passage between Iriomote and Okinawa. The calculation of heat balance indicates that the South China Sea absorbs net heat flux from the sun and atmosphere with a rate of 0.08 PW, while the atmosphere gains net heat flux from the Baohai, Yellow and East China Seas with a rate of 0.05 PW.
基金The National Key Research and Development Program of China under contract No.2016YFC1402604the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2015ASKJ01+4 种基金the SOA Program on Global Change and Air-Sea Interactions under contract Nos GASI-IPOVAI-03,GASI-IPOVAI-02 and GASI-IPOVAI-01-02the National Natural Science Foundation of China under contract Nos 40476025,41506036 and 41876027the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1606405the Office of Naval Research of United States under contract No.N00014-08-01-0618the China-Indonesia Maritime Cooperation Fund
文摘Besides the Indonesian throughflow(ITF), the South China Sea throughflow(SCSTF) also contributes to the water transport from the Pacific to the Indian Ocean. However, this South China Sea(SCS) branch at the Karimata Strait is poorly observed until 2007, even though its importance has been suggested by numerical studies for decades. In this paper, we review the nearly 10-year field measurement in the Karimata Strait by the execution of the projects of "SCS-Indonesian Seas Transport/Exchange(SITE) and Impacts on Seasonal Fish Migration" and "The Transport, Internal Waves and Mixing in the Indonesian Throughflow regions(TIMIT) and Impacts on Marine Ecosystem", which extend the observations from the western Indonesian seas to the east to include the main channels of the ITF, is introduced. Some major achievements from these projects are summarized.
基金This work was jointly supported by the Chinese Academy of Sciences“Innovation Program”under Grant No.KZCX2-SW-210the National Key Basic Research of China under Grant No.G2000078502the National Natural Science Foundation of China under Grant Nos.40233031,40375030,and 40405017.
文摘A quasi-global eddy permitting oceanic GCM, LICOM1.0, is run with the forcing of ERA40 daily wind stress from 1958 to 2001. The modelled Indonesian Throughflow (ITF) is reasonable in the aspects of both its water source and major pathways. Compared with the observation, the simulated annual mean and seasonal cycle of the ITF transport are fairly realistic. The interannual variation of the tropical Pacific Ocean plays a more important role in the interannual variability of the ITF transport. The relationship between the ITF and the Indian Ocean Dipole (IOD) also reflects the influence of ENSO. However, the relationship between the ITF transport and the interannual anomalies in the Pacific and Indian Oceans vary with time. During some years, (e.g., 1994), the effect of a strong IOD on the ITF transport is more than that from ENSO.
基金The National Science Foundation of the United States under contract No.OCE-07-25935the Office of Naval Research of the United States under contract No.N00014-08-1-0618 (for US LDEO)+4 种基金the National Basic Research Program under contract No.2011CB403502the International Cooperation Program of China under contract No.2010DFB23580the International Cooperation Program of State Oceanic Administration of China under contract No.QY0213022the First Institute of Oceanography,the State Oceanic Administration of China under contract No.2010G06 (for Chinese researchers)the Lamont-Doherty Earth Obseruatory contribution No.7626
文摘In order to quantitatively estimate the volume and property transports between the South China Sea and Indonesian Seas via the Karimata Strait, two trawi-resistant bottom mounts, with ADCPs embedded, were deployed in the strait to measure the velocity profile as part of the South China Sea-Indonesian Seas trans- port/exchange (SITE) program. A pair of surface and bottom acoustic modems was employed to transfer the measured velocity without recovering the mooring. The advantage and problems of the instruments in this field work are reported and discussed. The field observations confirm the existence of the South Chi- na Sea branch of Indonesian throughflow via the Karimata Strait with a stronger southward flow in boreal winter and weaker southward bottom flow in boreal summer, beneath the upper layer northward (reversal) flow. The estimate of the averaged volume, heat and freshwater transports from December 2007 to March 2008 (winter) is (-2.7±1.1)×10^6 m^3/s, (-0.30±0.11) PW, 2008 (summer) is (1.2±0.6)×10^6 m^3/s, (0.14±0.03) PW, (-0.18±0.07) × 106 m3/s and from May to September (0.12±0.04)×10^6 m^3/s and for the entire record from December 2007 to October 2008 is (-0.5±1.9)×10^6 m^3/s, (-0.05±0.22) PW, (-0.01±0.15)×10^6 m^3/s (nega- tive/positive represents southward/northward transport), respectively. The existence of southward bottom flow in boreal summer implies that the downward sea surface slope from north to south as found by Fang et al. (2010) for winter is a year-round phenomenon.
基金supported by the Chinese Academy of Sciences' Knowledge Innovation Program (Grant Nos.KZCX2-YW-214 and KZCX2-YW-BR-04)the National Natural Science Foundation of China (Grant Nos.40806005,40640420557 and 40625017)supported by a grant from the City University of Hong Kong (Project No. 7002329)
文摘Changes in the Indonesian Throughflow (ITF) and the South China Sea throughflow-measured by the Luzon Strait Transport (LST)-associated with the 1976/77 regime shift are analyzed using the Island Rule theory and the Simple Ocean Data Assimilation dataset. Results show that LST increased but ITF transport decreased after 1975. Such changes were induced by variations in wind stress associated with the regime shift. The strengthening of the easterly wind anomaly east of the Luzon Strait played an important role in the increase of LST after 1975, while the westerly wind anomaly in the equatorial Pacific contributed significantly to the decrease in ITF transport after 1975; accounting for 53% of the change. After 1975, the Kuroshio Current strengthened and the Mindanao Current weakened in response to a decrease in the total transport of the North Equatorial Current. Both the North Equatorial Countercurrent and the South Equatorial Current weakened after 1975, and an anomalous cyclonic circulation in the western equatorial Pacific prevented the tropical Pacific water from entering the Indian Ocean directly.
文摘Using a global OGCM and its relevant coupledocean-atmosphere GCM with the contemporary, 6 MaBPand 14 MaBP oceanic topography, respectively, a series ofnumerical experiments are implemented in order to investi-gate the effect of the north shift of Australian continent onthe tropical oceanic circulation, especially the formation ofthe western Pacific warm pool. The numerical experimentsof the individual OGCM forced by the modern atmosphericcirculation indicate that the closure of Indonesian passageresults in warming in the tropical Pacific Ocean and coolingin the tropical Indian Ocean; furthermore, it also results inchange in source of the Indonesian Through Flow (ITF) wa-ter, e.g. ITF mainly originates from the south Pacific at 14MaBP, but it mainly originates from the north Pacific now.The coupled model shows similar results as the individualOGCM qualitatively.
基金sponsored by the National Public Benefit (Meteorology) Research Foundation of China (Grant No. GYHY 201306018)
文摘The role of the Indonesian Throughflow (ITF) in the influence of the Indian Ocean Dipole (IOD) on ENSO is investigated using version 2 of the Parallel Ocean Program (POP2) ocean general circulation model. We demonstrate the results through sensitivity experiments on both positive and negative IOD events from observations and coupled general circulation model simulations. By shutting down the atmospheric bridge while maintaining the tropical oceanic channel, the IOD forcing is shown to influence the ENSO event in the following year, and the role of the ITF is emphasized. During positive IOD events, negative sea surface height anomalies (SSHAs) occur in the eastern Indian Ocean, indicating the existence of upwelling. These upwelling anomalies pass through the Indonesian seas and enter the western tropical Pacific, resulting in cold anomalies there. These cold temperature anomalies further propagate to the eastern equatorial Pacific, and ultimately induce a La Nifia- like mode in the following year. In contrast, during negative IOD events, positive SSHAs are established in the eastern Indian Ocean, leading to downwelling anomalies that can also propagate into the subsurface of the western Pacific Ocean and travel further eastward. These downwelling anomalies induce negative ITF transport anomalies, and an E1 Nifio-like mode in the tropical eastern Pacific Ocean that persists into the following year. The effects of negative and positive IOD events on ENSO via the ITF are symmetric. Finally, we also estimate the contribution of IOD forcing in explaining the Pacific variability associated with ENSO via ITE
文摘BACKGROUND Recently, gut microbiota has been associated with various diseases other than intestinal disease. Thus, there has been rapid growth in the study of gut microbiota. Considering the numerous factors influencing gut microbiota such as age, diet, etc., area-based research is required. Indonesia has numerous different tribes and each of these tribes have different lifestyles. Hence, it is expected that each tribe has a specific gut microbiota. A deeper insight into the composition of gut microbiota can be used to determine the condition of gut microbiota in Indonesians and to consider which treatment may be suitable and effective to improve health status.AIM To investigate the gut microbiota of Indonesian subjects represented by Javanese and Balinese tribes by analyzing fecal samples.METHODS Fecal samples were collected from a total of 80 individuals with 20 in each of the young groups ranging from 25-45 years and the elderly group aged 70 years or more from two different regions, Yogyakarta and Bali. Fecal sample collection was performed at the end of the assessment period(day 14 ± 1 d) during which time the subjects were not allowed to consume probiotic or antibiotic products.The quantification of various Clostridium subgroups, Lactobacillus subgroups,Enterococcus, Streptococcus, Staphylococcus, Bacteroides fragilis group and Prevotella,Bifidobacterium and Atopobium cluster, Enterobacteriaceae and Pseudomonas was performed using the Yakult intestinal flora-scan(YIF-SCAN).RESULTS The bacterial population in younger subjects' feces was higher than that in the elderly population, with a total of approximately 10.0 – 10.6 log10 bacterial cells/g feces. The most abundant bacteria in all groups were Clostridium, followed by Prevotella, Atopobium, Bifidobacterium and Bacteroides. In the elderly, an increase in Enterobacteriaceae, Coliform and Escherichia coli was found. In terms of bacterial counts in Yogyakarta, total bacteria, Clostridium coccoides(C. coccoides) group,Bifidobacterium, Prevotella, Lactobacil
基金jointly supported by National Natural Science Foundation of China(Grant No.41176044)The German Research Foundation(Grant No.KU649/28-1)+1 种基金Specialized Research Fund for the Doctoral Program(Grant No.20096101120025)State Key Laboratory of Continental Dynamics(Grant No.BJ12139)
文摘The Indonesian Throughflow (ITF) links upper ocean waters of the west Pacific and Indian Ocean, modulates heat and fresh water budgets between these oceans, and in turn plays an important role in global climate change. The climatic phenomena such as the East Asian monsoon and E1 Nifio-Southern Oscillation (ENSO) exert a strong influence on flux, water properties and vertical stratification of the ITF. This work studied sediments of Core SO 18462 that was retrieved from the outflow side of the ITF in the Timor Sea in order to investigate response of the ITF to monsoon and ENSO activities since the last glacial. Based on Mg/Ca ratios and oxygen isotopes in shells of planktonic foraminiferal surface and thermocline species, seawater temperatures and salinity of both surface and thermocline waters and vertical thermal gradient of the ITF outflow were recon- structed. Records of Core SO18462 were then compared with those from Core 3cBX that was recovered from the western Pa- cific warm pool (WPWP). The results displayed that similar surface waters occurred in the Timor Sea and the WPWP during the last glacial. Since -16 ka, an apparent difference in surface waters between these two regions exists in salinity, indicated by much fresher waters in the Timor Sea than in the WPWP. In contrast, there is little change in difference of sea surface temper- atures (SSTs). With regard to thermocline temperature (TT), it increased until -11.5 ka since the last glacial, and then re- mained an overall unchanged trend in the WPWP but continuously decreased in the Timor Sea towards the late Holocene. Since ~6 ka, thermocline waters have tended to be close to each other in between the Timor Sea and the WPWP. It is indicated that intensified precipitation due to East Asian monsoon and possible ENSO cold phase significantly freshened surface waters over the Indonesian Seas, impeding the ITF surface flow and in turn having enhanced thermocline flow during the Holocene. Consequently, thermocline water of the ITF outflo
文摘In 2019, Indonesia was ranked second with 619,840.03 carbon emissions, after India. Therefore, the Indonesian government issued a zero emission plan in 2022 and encouraged Indonesians to purchase electric vehicles, striving to achieve zero emissions by 2060. Facing the huge potential market for the development of electric vehicles in Indonesia, the Chinese brand Wuling took this opportunity to launch its first electric vehicle, Wuling Air EV, in Indonesia. This study aims to analyze the influence of the brand image of Wuling electric vehicles, brand awareness, country of origin and perceived risk on the purchase intention of Indonesian consumers. Data collection in this study was carried out through offline and online questionnaires which were distributed to 150 respondents who met the research criteria in the JABODETABEK area, and they all owned cars and had driving experience. Partial Least Squares-Structural Equation Modeling (PLS-SEM) was adopted for data analysis. The results of this study indicate that country of origin, perceived risk, and brand image have a significant effect on consumer purchase intention. In addition, perceived risk also has a significant positive impact on brand image. However, the influence of country of origin and brand awareness has no significant effect on brand image.
基金This work was supported by the K.C. Wang Foundation of Centre National dela Recherche Scientifique of France, the National Natural Science Foundation of China (Grant No. 40170614)the Starting Foundation for Returned Students by the Ministry of Educat
文摘The Indonesian Archipelago provides important heat transport pathways of the Western Pacific Warm Pool between the northern Indian Ocean and western equatorial Pacific Ocean, that exert important impacts on global climate change. This study investigated AMS 14C, δ18O, planktonic foraminifer assemblages and sedimentation rates in three piston cores collected in the Indonesian Archipelago. The results indicate that changes in the Indonesian Archipelago heat transport pathways were phase characteristic and in steps during the last deglaciation. In the deglaciation Termination IA, at about 12.5 kaBP, sea level rose rapidly in a short time period, and Makassar and Lombok straits widened suddenly for warm and fresh water from the Pacific to pour into the Java Sea and eastern Indian Ocean. During the Termination IB, about 9.5 kaBP, sea level rose rapidly again, and the South China Sea (SCS) started to connect with the Java Sea. With monsoon actions, a large amount of fresh water from the SCS shelf area flew
基金supported by the China 973 Project (Grant No. 2012CB956000)the NSFC (Grant Nos. 40888001, 41176019, 41005042 and 40975065)
文摘Lag correlations of sea surface temperature anomalies (SSTAs), sea surface height anomalies (SSHAs), subsurface temperature anomalies, and surface zonal wind anomalies (SZWAs) produced by the Flexible Global Ocean-Atmosphere-Land System modeh Grid-point Version 2 (FGOALS-g2) are analyzed and com- pared with observations. The insignificant, albeit positive, lag correlations between the SSTAs in the south- eastern tropical Indian Ocean (STIO) in fall and the SSTAs in the central-eastern Pacific cold tongue in the following summer through fall are found to be not in agreement with the observational analysis. The model, however, does reproduce the significant lag correlations between tile SSHAs in the STIO in fall and those in the cold tongue at the one-year time lag in the observations. These, along with the significant lag correlations between the SSTAs in the STIO in fall and the subsurface temperature anomalies in the equatorial Pacific vertical section in the following year, suggest that the Indonesian Throughflow plays an important role in propagating the Indian Ocean anomalies into the equatorial Pacific Ocean. Analyses of the interannual anomalies of the Indonesian Throughflow transport suggest that the FGOALS-g2 climate system simulates, but underestimates, the oceanic channel dynamics between the Indian and Pacific Oceans. FGOALS-g2 is shown to produce lag correlations between the SZWAs over the western equatorial Pacific in fall and the cold tongue SSTAs at the one-year time lag that are too strong to be realistic in comparison with observations. The analyses suggest that the atmospheric bridge over the Indo-Pacific Ocean is overestimated in the FGOALS-g2 coupled climate model.
文摘The objective of this study is to model the mean and seasonal mass transportof the Pacific to Indian O-cean throughflow using variable-grid global Ocean General CirculationModel (OGCM) with fine grid (1°/6) covering the area from 20°S to 60°N and from 98°E to 156°E.The computations show that Indonesian Throughflow (ITF) mass transport, computed as a sum ofthrough-strait transport, has maximum transport in Sept. (17. 5Sv) and minimum transport in Jan. (9.5Sv). The annual mean ITF transport amounts to 14. 5Sv. Twenty-two percent of this transport passesthrough Lombok Strait. Sixty-five percent of this transport passes through Timor Passage.Semi-annual variability is apparent in Lombok and Ombai Straits while annual variability is apparentin Timor Passage.
基金the National Basic Research Program of China("973"program) under contract No.2006CB403601the National Natural Science Foundation of China under contract No.40576016
文摘On the basis of Argo data and historic temperature/salinity data from the World Ocean Database 2001 ( WOD01 ), origins and spreading pathways of the subsurface and intermediate water masses in the Indonesian Throughflow (ITF) region were discussed by analyzing distributions of salinity on representative isopyenal layers. Results were shown that, subsurface water mostly comes from the North Pacific Ocean while the intermediate water originates from both the North and South Pacific Ocean, even possibly from the Indian Ocean. Spreading through the Sulawesi Sea, the Makassar Strait, and file Flores Sea, the North Pacific subsurface water and the North Pacific Intermediate water dominate the western part of the Indonesian Archipelago. Furthermore as the depth increases, the features of the North Pacific sourced water masses become more obvious. In the eastern part of the waters, high sa- linity South Pacific subsurface water is blocked by a strong salinity front between Halmahera and New Guinea. Intermediate water in the eastern interior region owns salinity higher than the North Pacific intermediate water and the antarctic intermediate water ( AAIW), possibly coming from the vertical mixing between subsurface water and the AAIW from the Pacific Ocean, and possibly coming from the northward extending of the AAIW from the Indian Ocean as well.
基金The GASI Project under contract Nos GASI-IPOVAI-01-02 and GASI-02-SCS-YGST2-02the National Natural Science Foundation of China under contract Nos 41776034 and 41706025the Foundation of Guangdong Province for Outstanding Young Teachers in University under contract No.YQ201588
文摘So far, large uncertainties of the Indonesian throughflow(ITF) reside in the eastern Indonesian seas, such as the Maluku Sea and the Halmahera Sea. In this study, the water sources of the Maluku Sea and the Halmahera Sea are diagnosed at seasonal and interannual timescales and at different vertical layers, using the state-of-the-art simulations of the Ocean General Circulation Model(OGCM) for Earth Simulator(OFES). Asian monsoon leaves clear seasonal footprints on the eastern Indonesian seas. Consequently, the subsurface waters(around 24.5σ_θ and at ~150 m) in both the Maluku Sea and the Halmahera Sea stem from the South Pacific(SP) during winter monsoon, but during summer monsoon the Maluku Sea is from the North Pacific(NP), and the Halmahera Sea is a mixture of waters originating from the NP and the SP. The monsoon impact decreases with depth, so that in the Maluku Sea, the intermediate water(around 26.8σ_θ and at ~480 m) is always from the northern Banda Sea and the Halmahera Sea water is mainly from the SP in winter and the Banda Sea in summer. The deep waters(around27.2σ_θ and at ~1 040 m) in both seas are from the SP, with weak seasonal variability. At the interannual timescale,the subsurface water in the Maluku Sea originates from the NP/SP during El Ni?o/La Ni?a, while the subsurface water in the Halmahera Sea always originates from the SP. Similar to the seasonal variability, the intermediate water in Maluku Sea mainly comes from the Banda Sea and the Halmahera Sea always originates from the SP. The deep waters in both seas are from the SP. Our findings are helpful for drawing a comprehensive picture of the water properties in the Indonesian seas and will contribute to a better understanding of the ocean-atmosphere interaction over the maritime continent.