Efficiency and linearity of the microwave power amplifier are critical elements for mobile communication systems. A memory polynomial baseband predistorter based on an indirect learning architecture is presented for i...Efficiency and linearity of the microwave power amplifier are critical elements for mobile communication systems. A memory polynomial baseband predistorter based on an indirect learning architecture is presented for improving the linearity of an envelope tracing (ET) amplifier with application to a wireless transmitter. To deal with large peak-to-average ratio (PAR) problem, a clipping procedure for the input signal is employed. Then the system performance is verified by simulation results. For a single carrier wideband code division multiple access (WCDMA) signal of 16-quadrature amplitude modulation (16-QAM), about 2% improvement of the error vector magnitude (EVM) is achieved at an average output power of 45.5 dBm and gain of 10.6 dB, with adjacent channel leakage ratio (ACLR) of -64.55 dBc at offset frequency of 5 MHz. Moreover, a three-carrier WCDMA signal and a third-generation (3G) long term evolution (LTE) signal are used as test signals to demonstrate the performance of the proposed linearization scheme under different bandwidth signals.展开更多
基金supported by the National High Technology Researchand Development Program of China (863 Program) (YJCB2008023WL)
文摘Efficiency and linearity of the microwave power amplifier are critical elements for mobile communication systems. A memory polynomial baseband predistorter based on an indirect learning architecture is presented for improving the linearity of an envelope tracing (ET) amplifier with application to a wireless transmitter. To deal with large peak-to-average ratio (PAR) problem, a clipping procedure for the input signal is employed. Then the system performance is verified by simulation results. For a single carrier wideband code division multiple access (WCDMA) signal of 16-quadrature amplitude modulation (16-QAM), about 2% improvement of the error vector magnitude (EVM) is achieved at an average output power of 45.5 dBm and gain of 10.6 dB, with adjacent channel leakage ratio (ACLR) of -64.55 dBc at offset frequency of 5 MHz. Moreover, a three-carrier WCDMA signal and a third-generation (3G) long term evolution (LTE) signal are used as test signals to demonstrate the performance of the proposed linearization scheme under different bandwidth signals.