The effect of Ce on inclusions and impact toughness of 2Cr13 stainless steel were studied by SEM and electron spectroscopy. Thermodynamic calculation was used to analyze the formation of RE inclusions in 2Cr13 stainle...The effect of Ce on inclusions and impact toughness of 2Cr13 stainless steel were studied by SEM and electron spectroscopy. Thermodynamic calculation was used to analyze the formation of RE inclusions in 2Cr13 stainless steel. The result shows that Al2 O3 and MnS can be entirely replaced by Ce2 O2 S and CeS. Fracture is changed from cleavage to ductile fracture by adding Ce to the 2Cr13 stainless steel, and the spherical rare earth oxysulfide inclusions (Ce2 O2 S) in the dimple are the main factors. The transverse impact value of 2Cr13 stainless steel has been improved obviously by Ce. The transverse impact value of RE-2Cr13 is increased by 54.55% at the temperature of --40℃, comparing with 0RE-2Cr13.展开更多
The microstructure and the characteristics of the inclusions embedded in ferrite matrix in simulated coarse-grain heat affected zone (CGHAZ) of a Ti-Zr-treated high strength low alloy (HSLA) steel have been investigat...The microstructure and the characteristics of the inclusions embedded in ferrite matrix in simulated coarse-grain heat affected zone (CGHAZ) of a Ti-Zr-treated high strength low alloy (HSLA) steel have been investigated. The microstructure of the simulated CGHAZ dominantly consisted of intragranular acicular ferrite (IAF) combining with a small amount of polygonal ferrite (PF), widmanst tten ferrite (WF), bainite ferrite (BF), pearlite and martensite-austenite (M-A) islands. The PF, WF and BF were generally observed at the prior austenite grain boundaries and the interlocking acicular ferrite was usually found intragranularly. It was found that the inclusions were composed of Ti2O3, ZrO2, Al2O3 locating at the center of the particles and MnS lying on the surface layer of the inclusions. The intragranular complex inclusions promoted the acicular ferrite formation and the refinement of microstructure whilst those at prior austenite grain boundaries caused PF formation on the inclusions. The simulated CGHAZ consisting of such complicated microstructure exhibited desired mechanical properties.展开更多
The mechanisms of RE in clean BNbRE steel were studied by means of experimental measurement, microstructural observation and theoretical analysis. For BNbRE steel, the state and the content of RE were measured, and th...The mechanisms of RE in clean BNbRE steel were studied by means of experimental measurement, microstructural observation and theoretical analysis. For BNbRE steel, the state and the content of RE were measured, and the effects and the mechanisms of RE on sulfide inclusions, microstructure and properties of steel were determined. On the condition of increasing the cleanliness of steel, the mechanisms of RE in steel were changed to certain degree. Small amount of RE has the effect of cleaning, modifying inclusions and alloying in clean steel, too. With increasing the cleanliness of BNbRE steel, addition of RE should be decreased properly. Under experimental conditions, the optimum addition of RE is -0.01 % (mass fraction) for clean BNbRE steel, while RE can evidently improve plasticity and impact toughness of BNbRE steel.展开更多
基金Item Sponsored by National Natural Science Foundation of China(50364001)
文摘The effect of Ce on inclusions and impact toughness of 2Cr13 stainless steel were studied by SEM and electron spectroscopy. Thermodynamic calculation was used to analyze the formation of RE inclusions in 2Cr13 stainless steel. The result shows that Al2 O3 and MnS can be entirely replaced by Ce2 O2 S and CeS. Fracture is changed from cleavage to ductile fracture by adding Ce to the 2Cr13 stainless steel, and the spherical rare earth oxysulfide inclusions (Ce2 O2 S) in the dimple are the main factors. The transverse impact value of 2Cr13 stainless steel has been improved obviously by Ce. The transverse impact value of RE-2Cr13 is increased by 54.55% at the temperature of --40℃, comparing with 0RE-2Cr13.
文摘The microstructure and the characteristics of the inclusions embedded in ferrite matrix in simulated coarse-grain heat affected zone (CGHAZ) of a Ti-Zr-treated high strength low alloy (HSLA) steel have been investigated. The microstructure of the simulated CGHAZ dominantly consisted of intragranular acicular ferrite (IAF) combining with a small amount of polygonal ferrite (PF), widmanst tten ferrite (WF), bainite ferrite (BF), pearlite and martensite-austenite (M-A) islands. The PF, WF and BF were generally observed at the prior austenite grain boundaries and the interlocking acicular ferrite was usually found intragranularly. It was found that the inclusions were composed of Ti2O3, ZrO2, Al2O3 locating at the center of the particles and MnS lying on the surface layer of the inclusions. The intragranular complex inclusions promoted the acicular ferrite formation and the refinement of microstructure whilst those at prior austenite grain boundaries caused PF formation on the inclusions. The simulated CGHAZ consisting of such complicated microstructure exhibited desired mechanical properties.
基金Project supported bythe National Natural Science Fundation of China (50374029)
文摘The mechanisms of RE in clean BNbRE steel were studied by means of experimental measurement, microstructural observation and theoretical analysis. For BNbRE steel, the state and the content of RE were measured, and the effects and the mechanisms of RE on sulfide inclusions, microstructure and properties of steel were determined. On the condition of increasing the cleanliness of steel, the mechanisms of RE in steel were changed to certain degree. Small amount of RE has the effect of cleaning, modifying inclusions and alloying in clean steel, too. With increasing the cleanliness of BNbRE steel, addition of RE should be decreased properly. Under experimental conditions, the optimum addition of RE is -0.01 % (mass fraction) for clean BNbRE steel, while RE can evidently improve plasticity and impact toughness of BNbRE steel.