The influence of double aging on the microstructure and mechanical properties of ultrahigh strength steel Aermet 100 was analyzed. Under the double aging, there is no apparent decrease in the strength of steel. Howeve...The influence of double aging on the microstructure and mechanical properties of ultrahigh strength steel Aermet 100 was analyzed. Under the double aging, there is no apparent decrease in the strength of steel. However, the impact fatigue life can be prolonged by 35.5% and dynamic fracture toughness be raised by 22.6% respectively, as compared with the normal aging. Based on the observation of microscopic structure, the physical mechanism of the prolongation of impact fatigue life and the enhancement of stability of the reverted austenite, AR, is analyzed further. The results show that this new technique is a breakthrough of combination optimization between strength and toughness for Aermet 100 steel. In the light of the current understanding on this subject, the volume fracture of soften and tough AR formed in process of heat preservation at higher temperature of double aging increases drastically. Moreover, during the treatment of lower temperature of double aging, the carbon separating from the martensitic ferrite will diffuse into AR, resulting that the martensitic brittleness decreases and the stability of AR increases.展开更多
借助金相显微镜、X射线衍射仪对超声波冲击加工与传统抛光后试样表层组织性能进行对比分析,研究超声波冲击加工对30Cr Mn Si Ni2A疲劳寿命的影响。结果表明,经超声冲击后,试样表层组织变得更加细密从而阻止裂纹在表面萌生,形成更高的残...借助金相显微镜、X射线衍射仪对超声波冲击加工与传统抛光后试样表层组织性能进行对比分析,研究超声波冲击加工对30Cr Mn Si Ni2A疲劳寿命的影响。结果表明,经超声冲击后,试样表层组织变得更加细密从而阻止裂纹在表面萌生,形成更高的残余压应力减缓了裂纹扩展速率,使得1200 MPa下30Cr Mn Si Ni2A钢试样的疲劳寿命较传统抛光下的试样增加了23.5%。展开更多
基金the National Natural Science Foundation of China(No.50171053) the Aeronautical Basic Science Foundation of China(No.0DG53054).
文摘The influence of double aging on the microstructure and mechanical properties of ultrahigh strength steel Aermet 100 was analyzed. Under the double aging, there is no apparent decrease in the strength of steel. However, the impact fatigue life can be prolonged by 35.5% and dynamic fracture toughness be raised by 22.6% respectively, as compared with the normal aging. Based on the observation of microscopic structure, the physical mechanism of the prolongation of impact fatigue life and the enhancement of stability of the reverted austenite, AR, is analyzed further. The results show that this new technique is a breakthrough of combination optimization between strength and toughness for Aermet 100 steel. In the light of the current understanding on this subject, the volume fracture of soften and tough AR formed in process of heat preservation at higher temperature of double aging increases drastically. Moreover, during the treatment of lower temperature of double aging, the carbon separating from the martensitic ferrite will diffuse into AR, resulting that the martensitic brittleness decreases and the stability of AR increases.
文摘借助金相显微镜、X射线衍射仪对超声波冲击加工与传统抛光后试样表层组织性能进行对比分析,研究超声波冲击加工对30Cr Mn Si Ni2A疲劳寿命的影响。结果表明,经超声冲击后,试样表层组织变得更加细密从而阻止裂纹在表面萌生,形成更高的残余压应力减缓了裂纹扩展速率,使得1200 MPa下30Cr Mn Si Ni2A钢试样的疲劳寿命较传统抛光下的试样增加了23.5%。