It is well known that an unhealthy lifestyle is a major risk factor for metabolic diseases,while in recent years,accumulating evidence has demonstrated that the gut microbiome and its metabolites also play a crucial r...It is well known that an unhealthy lifestyle is a major risk factor for metabolic diseases,while in recent years,accumulating evidence has demonstrated that the gut microbiome and its metabolites also play a crucial role in the onset and development of many metabolic diseases,including obesity,type 2 diabetes,nonalcoholic fatty liver disease,cardiovascular disease and so on.Numerous microorganisms dwell in the gastrointestinal tract,which is a key interface for energy acquisition and can metabolize dietary nutrients into many bioactive substances,thus acting as a link between the gut microbiome and its host.The gut microbiome is shaped by host genetics,immune responses and dietary factors.The metabolic and immune potential of the gut microbiome determines its significance in host health and diseases.Therefore,targeting the gut microbiome and relevant metabolic pathways would be effective therapeutic treatments for many metabolic diseases in the near future.This review will summarize information about the role of the gut microbiome in organism metabolism and the relationship between gut microbiome-derived metabolites and the pathogenesis of many metabolic diseases.Furthermore,recent advances in improving metabolic diseases by regulating the gut microbiome will be discussed.展开更多
AIM: To investigate the effect of moxibustion on intestinal flora and release of interleukin-12 (IL-12) and tumor necrosis factor-α (TNF-α) from the colon in rat with ulcerative colitis (UC). METHODS: A rat model of...AIM: To investigate the effect of moxibustion on intestinal flora and release of interleukin-12 (IL-12) and tumor necrosis factor-α (TNF-α) from the colon in rat with ulcerative colitis (UC). METHODS: A rat model of UC was established by local stimulation of the intestine with supernatant from colonic contents harvested from human UC patients. A total of 40 male Sprague-Dawley rats were randomly divided into the following groups: normal (sham), model (UC), herb-partition moxibustion (HPM-treated), and positive control sulfasalazine (SA-treated). Rats treated with HPM received HPM at acupuncture points ST25 and RN6, once a day for 15 min, for a total of 8 d. Rats in the SA group were perfused with SA twice a day for 8 d. The colonic histopathology was observed by hematoxylin-eosin. The levels of intestinal flora, including Bifidobacterium, Lactobacillus, Escherichia coli (E. coli), and Bacteroides fragilis (B. fragilis), were tested by real-time quantitative polymerase chain reaction to detect bacterial 16S rRNA/DNA in order to determine DNA copy numbers of each specific species. Immunohistochemical assays were used to observe the expression of TNF-α and IL-12 in the rat colons. RESULTS: HPM treatment inhibited immunopathology in colonic tissues of UC rats; the general morphological score and the immunopathological score were significantly decreased in the HPM and SA groups compared with the model group [3.5 (2.0-4.0), 3.0 (1.5-3.5) vs 6.0 (5.5-7.0), P < 0.05 for the general morphological score, and 3.00 (2.00-3.50), 3.00 (2.50-3.50) vs 5.00 (4.50-5.50), P < 0.01 for the immunopathological score]. As measured by DNA copy number, we found that Bifidobacterium and Lactobacillus, which are associated with a healthy colon, were significantly higher in the HPM and SA groups than in the model group (1.395 ± 1.339, 1.461 ± 1.152 vs 0.045 ± 0.036, P < 0.01 for Bifidobacterium, and 0.395 ± 0.325, 0.851 ± 0.651 vs 0.0015 ± 0.0014, P < 0.01 for Lactobacillus). On the other hand, E. coli and B. fragilis, which are as展开更多
Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to underst...Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also inter- fere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influ- ence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, pro- biotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.展开更多
Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical...Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical fibroblastlike morphology, a large expansive potential, and cell cycle characteristics including a subset of quiescent cells. In vitro differentiation assays showed the tripotential differentiation capacity of these cells toward adipogenic, osteogenic and chondrogenic lineages. Flow cytometry analyses and immunocytochemistry stain showed that placental MSC was a homogeneous cell population devoid of hematopoietic cells, which uniformly expressed CD29, CD44, CD73, CD105, CD166, laminin, fibronectin and vimentin while being negative for expression of CD31, CD34, CD45 and m-smooth muscle actin. Most importantly, immuno-phenotypic analyses demonstrated that these cells expressed class Ⅰ major histocompatibility complex (MHC-I), but they did not express MHC-Ⅱ molecules. Additionally these cells could suppress umbilical cord blood (UCB) lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli. This strongly implies that they may have potential application in allograft transplantation. Since placenta and UCB are homogeneous, the MSC derived from human placenta can be transplanted combined with hematopoietic stem cells (HSC) from UCB to reduce the potential graft-versus-host disease (GVHD) in recipients.展开更多
基金This work was supported by the National Key Research and Development Program of China(2018YFA0800700 and 2018YFC1003200)and the National Natural Science Foundation of the P.R.of China(No.91857115,31925021,and 81921001).
文摘It is well known that an unhealthy lifestyle is a major risk factor for metabolic diseases,while in recent years,accumulating evidence has demonstrated that the gut microbiome and its metabolites also play a crucial role in the onset and development of many metabolic diseases,including obesity,type 2 diabetes,nonalcoholic fatty liver disease,cardiovascular disease and so on.Numerous microorganisms dwell in the gastrointestinal tract,which is a key interface for energy acquisition and can metabolize dietary nutrients into many bioactive substances,thus acting as a link between the gut microbiome and its host.The gut microbiome is shaped by host genetics,immune responses and dietary factors.The metabolic and immune potential of the gut microbiome determines its significance in host health and diseases.Therefore,targeting the gut microbiome and relevant metabolic pathways would be effective therapeutic treatments for many metabolic diseases in the near future.This review will summarize information about the role of the gut microbiome in organism metabolism and the relationship between gut microbiome-derived metabolites and the pathogenesis of many metabolic diseases.Furthermore,recent advances in improving metabolic diseases by regulating the gut microbiome will be discussed.
基金Supported by National Natural Science Foundation of China, No. 81001549National Basic Research Program of China (973 program), No. 2009CB522900+1 种基金Shanghai Health System of Outstanding Young Talent Cultivation Program, No. XYQ2011068Shanghai Rising-Star Program, No. 10QA1406100
文摘AIM: To investigate the effect of moxibustion on intestinal flora and release of interleukin-12 (IL-12) and tumor necrosis factor-α (TNF-α) from the colon in rat with ulcerative colitis (UC). METHODS: A rat model of UC was established by local stimulation of the intestine with supernatant from colonic contents harvested from human UC patients. A total of 40 male Sprague-Dawley rats were randomly divided into the following groups: normal (sham), model (UC), herb-partition moxibustion (HPM-treated), and positive control sulfasalazine (SA-treated). Rats treated with HPM received HPM at acupuncture points ST25 and RN6, once a day for 15 min, for a total of 8 d. Rats in the SA group were perfused with SA twice a day for 8 d. The colonic histopathology was observed by hematoxylin-eosin. The levels of intestinal flora, including Bifidobacterium, Lactobacillus, Escherichia coli (E. coli), and Bacteroides fragilis (B. fragilis), were tested by real-time quantitative polymerase chain reaction to detect bacterial 16S rRNA/DNA in order to determine DNA copy numbers of each specific species. Immunohistochemical assays were used to observe the expression of TNF-α and IL-12 in the rat colons. RESULTS: HPM treatment inhibited immunopathology in colonic tissues of UC rats; the general morphological score and the immunopathological score were significantly decreased in the HPM and SA groups compared with the model group [3.5 (2.0-4.0), 3.0 (1.5-3.5) vs 6.0 (5.5-7.0), P < 0.05 for the general morphological score, and 3.00 (2.00-3.50), 3.00 (2.50-3.50) vs 5.00 (4.50-5.50), P < 0.01 for the immunopathological score]. As measured by DNA copy number, we found that Bifidobacterium and Lactobacillus, which are associated with a healthy colon, were significantly higher in the HPM and SA groups than in the model group (1.395 ± 1.339, 1.461 ± 1.152 vs 0.045 ± 0.036, P < 0.01 for Bifidobacterium, and 0.395 ± 0.325, 0.851 ± 0.651 vs 0.0015 ± 0.0014, P < 0.01 for Lactobacillus). On the other hand, E. coli and B. fragilis, which are as
基金supported by the National Institutes of Health (NIH Grant No. CA190122)+3 种基金Department of Defense (Do D Award No. W81XWH-16-1-0151) of the United States awarded to QTsupported by Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (CIFMS Grant No. 2016-12M-1-001) awarded to CB
文摘Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also inter- fere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influ- ence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, pro- biotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.
基金This study was supported by a grant from National Natural Science Foundation of China(No.30271245)Hi-Tech Research and Development Program of China(863 Program)(No.2003AA205170)+1 种基金National Basic Research Program of China(973 Program)(No.G 1999054302)a grant from Bejing Gynecology and Obstetrics Hospital Affiliate of Capital University of Medical Sciences.
文摘Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical fibroblastlike morphology, a large expansive potential, and cell cycle characteristics including a subset of quiescent cells. In vitro differentiation assays showed the tripotential differentiation capacity of these cells toward adipogenic, osteogenic and chondrogenic lineages. Flow cytometry analyses and immunocytochemistry stain showed that placental MSC was a homogeneous cell population devoid of hematopoietic cells, which uniformly expressed CD29, CD44, CD73, CD105, CD166, laminin, fibronectin and vimentin while being negative for expression of CD31, CD34, CD45 and m-smooth muscle actin. Most importantly, immuno-phenotypic analyses demonstrated that these cells expressed class Ⅰ major histocompatibility complex (MHC-I), but they did not express MHC-Ⅱ molecules. Additionally these cells could suppress umbilical cord blood (UCB) lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli. This strongly implies that they may have potential application in allograft transplantation. Since placenta and UCB are homogeneous, the MSC derived from human placenta can be transplanted combined with hematopoietic stem cells (HSC) from UCB to reduce the potential graft-versus-host disease (GVHD) in recipients.