在研制3mm D icke辐射计的基础上,设计出基于PC-MCU主从控制模式的成像系统.针对运动平台成像系统提高灵敏度与空间分辨率的矛盾,采用软积分调节系统的积分时间,给出了软硬积分级联系统的积分公式,并采用了一种复合形态滤波器改善辐射...在研制3mm D icke辐射计的基础上,设计出基于PC-MCU主从控制模式的成像系统.针对运动平台成像系统提高灵敏度与空间分辨率的矛盾,采用软积分调节系统的积分时间,给出了软硬积分级联系统的积分公式,并采用了一种复合形态滤波器改善辐射图像分辨率的方法.实验结果表明:3mm辐射图像明显优于8mm辐射图像的空间分辨率,形态学的处理方法可有效地去除图像的噪声,验证了软积分在一定程度上可替代硬积分的功能.3mmD icke辐射计的指标为中心频率94GHz,灵敏度0.2K,线性度0.999,系统带宽2GHz,卡赛格伦天线3dB波束宽度为0.5°.展开更多
Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have ...Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.展开更多
Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding th...Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.展开更多
Infrared(IR)detection is vital for various military and civilian applications.Recent research has highlighted the potential of two-dimensional(2D)topological semimetals in IR detection due to their distinctive advanta...Infrared(IR)detection is vital for various military and civilian applications.Recent research has highlighted the potential of two-dimensional(2D)topological semimetals in IR detection due to their distinctive advantages,including van der Waals(vdW)stacking,gapless electronic structure,and Van Hove singularities in the electronic density of states.However,challenges such as large-scale patterning,poor photoresponsivity,and high dark current of photodetectors based on 2D topological semimetals significantly impede their wider applications in low-energy photon sensing.Here,we demonstrate the in situ fabrication of PtSe_(2)/Ge Schottky junction by directly depositing 2D PtSe_(2) films with a vertical layer structure on a Ge substrate with an ultrathin AlOx layer.Due to high quality junction,the photodetector features a broadband response of up to 4.6μm,along with a high specific detectivity of�1012 Jones,and operates with remarkable stability in ambient conditions as well.Moreover,the highly integrated device arrays based on PtSe_(2)/AlOx/Ge Schottky junction showcases excellent Mid-IR(MIR)imaging capability at room temperature.These findings highlight the promising prospects of 2D topological semimetals for uncooled IR photodetection and imaging applications.展开更多
Self-imaging is an important function for signal transport,distribution,and processing in integrated optics,which is usually implemented by multimode interference or diffractive imaging process.However,these processes...Self-imaging is an important function for signal transport,distribution,and processing in integrated optics,which is usually implemented by multimode interference or diffractive imaging process.However,these processes suffer from the resolution limit due to classical wave propagation dynamics.We propose and demonstrate subwavelength optical imaging in one-dimensional silicon waveguide arrays,which is implemented by cascading straight and curved waveguides in sequence.The coupling coefficient between the curved waveguides is tuned to be negative to reach a negative dispersion,which is an analog to a hyperbolic metamaterial with a negative refractive index.Therefore,it endows the waveguide array with a superlens function as it is connected with a traditional straight waveguide array with positive dispersion.With a judiciously engineered cascading silicon waveguide array,we successfully show the subwavelength self-imaging process of each input port of the waveguide array as the single point source.Our approach provides a strategy for dealing with optical signals at the subwavelength scale and indicates functional designs in high-density waveguide integrations.展开更多
In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation betw...In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.展开更多
文摘在研制3mm D icke辐射计的基础上,设计出基于PC-MCU主从控制模式的成像系统.针对运动平台成像系统提高灵敏度与空间分辨率的矛盾,采用软积分调节系统的积分时间,给出了软硬积分级联系统的积分公式,并采用了一种复合形态滤波器改善辐射图像分辨率的方法.实验结果表明:3mm辐射图像明显优于8mm辐射图像的空间分辨率,形态学的处理方法可有效地去除图像的噪声,验证了软积分在一定程度上可替代硬积分的功能.3mmD icke辐射计的指标为中心频率94GHz,灵敏度0.2K,线性度0.999,系统带宽2GHz,卡赛格伦天线3dB波束宽度为0.5°.
文摘Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.
基金Supported by the PetroChina Science and Technology Project(2021DJ4002,2022DJ3908)。
文摘Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.
基金supported by the National Natural Science Foundation of China(Nos.U2004165,U22A20138,62374149,and 11974016)Natural Science Foundation of Henan Province,China(No.202300410376)grateful for the technical support from the Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(SINANO).
文摘Infrared(IR)detection is vital for various military and civilian applications.Recent research has highlighted the potential of two-dimensional(2D)topological semimetals in IR detection due to their distinctive advantages,including van der Waals(vdW)stacking,gapless electronic structure,and Van Hove singularities in the electronic density of states.However,challenges such as large-scale patterning,poor photoresponsivity,and high dark current of photodetectors based on 2D topological semimetals significantly impede their wider applications in low-energy photon sensing.Here,we demonstrate the in situ fabrication of PtSe_(2)/Ge Schottky junction by directly depositing 2D PtSe_(2) films with a vertical layer structure on a Ge substrate with an ultrathin AlOx layer.Due to high quality junction,the photodetector features a broadband response of up to 4.6μm,along with a high specific detectivity of�1012 Jones,and operates with remarkable stability in ambient conditions as well.Moreover,the highly integrated device arrays based on PtSe_(2)/AlOx/Ge Schottky junction showcases excellent Mid-IR(MIR)imaging capability at room temperature.These findings highlight the promising prospects of 2D topological semimetals for uncooled IR photodetection and imaging applications.
基金The authors acknowledge the financial support from the National Key R&D Program of China(2017YFA0303701,2016YFA0202103)National Natural Science Foundation of China(91850204,11674167).Tao Li acknowledges support from Dengfeng Project B of Nanjing University.The authors have no conflicts of interest to disclose.
文摘Self-imaging is an important function for signal transport,distribution,and processing in integrated optics,which is usually implemented by multimode interference or diffractive imaging process.However,these processes suffer from the resolution limit due to classical wave propagation dynamics.We propose and demonstrate subwavelength optical imaging in one-dimensional silicon waveguide arrays,which is implemented by cascading straight and curved waveguides in sequence.The coupling coefficient between the curved waveguides is tuned to be negative to reach a negative dispersion,which is an analog to a hyperbolic metamaterial with a negative refractive index.Therefore,it endows the waveguide array with a superlens function as it is connected with a traditional straight waveguide array with positive dispersion.With a judiciously engineered cascading silicon waveguide array,we successfully show the subwavelength self-imaging process of each input port of the waveguide array as the single point source.Our approach provides a strategy for dealing with optical signals at the subwavelength scale and indicates functional designs in high-density waveguide integrations.
文摘In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.