The broadband diffuse radiation method is improved to retrieve the aerosol refractive index imaginary part (AIP) and broadband (400-1000 nm mean) single scattering albedo (SSA). In this method, four sets of SSA ...The broadband diffuse radiation method is improved to retrieve the aerosol refractive index imaginary part (AIP) and broadband (400-1000 nm mean) single scattering albedo (SSA). In this method, four sets of SSA selection criteria are proposed for quality control. The method is used to retrieve AIP, SSA and absorptive optical thickness (AbOT) from routine hourly-exposed pyrheliometer and paranometer measurements over 11 sites (meteorological observatories) in China during 1998-2003. Apart from one suburban site (Ejin Qi), the other urban sites are all located around big or medium cities. As shown in the retrieval results, annual mean SSA during 1998-2003 changes from 0.941 (Wuhan) to 0.849 (Lanzhou), and AIP from 0.0054 to 0.0203. The 11-site average annual mean SSA and AIP are 0.898 and 0.0119, respectively. SSA during winter is smaller for most sites. There is an evidently positive correlation between SSA and aerosol optical thickness (AOT) for all sites. There is also a positive correlation between SSA and relative humidity for most sites, but a negative correlation for a few sites, such as Kashi and ǚrǚmqi in Northwest China.展开更多
We give an explicit proof of equivalence of the two-point function to one-loop order in the two formalisms of thermal theory based on the expressions in the real-time formalism and indicate that the key point of comp...We give an explicit proof of equivalence of the two-point function to one-loop order in the two formalisms of thermal theory based on the expressions in the real-time formalism and indicate that the key point of completing the proof is to separate carefully the imaginary part of the zero-temperature loop integral from relevant expressions and this fact will certainly be very useful for examination of the equivalent problem of two formalisms of thermal field theory in other theories, including the one of the propagators for scalar bound states in an NJL model.展开更多
We re-examine physical causal propagators for scalar and pseudoscalar bound states at finite temperature in a chiral NJL model, defined by four-point amputated functions subtracted through the gap equation, and prove...We re-examine physical causal propagators for scalar and pseudoscalar bound states at finite temperature in a chiral NJL model, defined by four-point amputated functions subtracted through the gap equation, and prove that they are completely equivalent in the imaginary-time and real-time formalisms by separating carefully the imaginary part of the zero-temperature loop integral. It is shown that the same thermal transformation matrix of the matrix propagators for these bound states in the real-time formalism is precisely the one of the matrix propagator for an elementary scalar particle and this fact shows the similarity of thermodynamic property between a composite and elementary scalar particle. The retarded and advanced propagators for these bound states are also given explicitly from the imaginary-time formalism.展开更多
The anti-resonant phenomenon of effective electromagnetic parameters of metamaterials has aroused controversy due to negative imaginary permittivity or permeability. It is experimentally found that the negative imagin...The anti-resonant phenomenon of effective electromagnetic parameters of metamaterials has aroused controversy due to negative imaginary permittivity or permeability. It is experimentally found that the negative imaginary permittivity can occur for the natural passive materials near the Fabry Perot resonances. We reveal the nature of negative imaginary permittivity, which is correlated with the magnetoelectric coupling. The anti-resonance of permittivity is a non-inherent feature for passive materials, while it can be inherent for devices or metamaterials. Our finding validates that the negative imaginary part of effective permittivity does not contradict the second law of thermodynamics for metamaterials owing to the magnetoelectric coupling.展开更多
文摘The broadband diffuse radiation method is improved to retrieve the aerosol refractive index imaginary part (AIP) and broadband (400-1000 nm mean) single scattering albedo (SSA). In this method, four sets of SSA selection criteria are proposed for quality control. The method is used to retrieve AIP, SSA and absorptive optical thickness (AbOT) from routine hourly-exposed pyrheliometer and paranometer measurements over 11 sites (meteorological observatories) in China during 1998-2003. Apart from one suburban site (Ejin Qi), the other urban sites are all located around big or medium cities. As shown in the retrieval results, annual mean SSA during 1998-2003 changes from 0.941 (Wuhan) to 0.849 (Lanzhou), and AIP from 0.0054 to 0.0203. The 11-site average annual mean SSA and AIP are 0.898 and 0.0119, respectively. SSA during winter is smaller for most sites. There is an evidently positive correlation between SSA and aerosol optical thickness (AOT) for all sites. There is also a positive correlation between SSA and relative humidity for most sites, but a negative correlation for a few sites, such as Kashi and ǚrǚmqi in Northwest China.
文摘We give an explicit proof of equivalence of the two-point function to one-loop order in the two formalisms of thermal theory based on the expressions in the real-time formalism and indicate that the key point of completing the proof is to separate carefully the imaginary part of the zero-temperature loop integral from relevant expressions and this fact will certainly be very useful for examination of the equivalent problem of two formalisms of thermal field theory in other theories, including the one of the propagators for scalar bound states in an NJL model.
文摘We re-examine physical causal propagators for scalar and pseudoscalar bound states at finite temperature in a chiral NJL model, defined by four-point amputated functions subtracted through the gap equation, and prove that they are completely equivalent in the imaginary-time and real-time formalisms by separating carefully the imaginary part of the zero-temperature loop integral. It is shown that the same thermal transformation matrix of the matrix propagators for these bound states in the real-time formalism is precisely the one of the matrix propagator for an elementary scalar particle and this fact shows the similarity of thermodynamic property between a composite and elementary scalar particle. The retarded and advanced propagators for these bound states are also given explicitly from the imaginary-time formalism.
基金Supported by the National Natural Science Foundation of China under Grant No 51102007the Fund for Discipline Construction of Beijing University of Chemical Technology under Grant No XK1702
文摘The anti-resonant phenomenon of effective electromagnetic parameters of metamaterials has aroused controversy due to negative imaginary permittivity or permeability. It is experimentally found that the negative imaginary permittivity can occur for the natural passive materials near the Fabry Perot resonances. We reveal the nature of negative imaginary permittivity, which is correlated with the magnetoelectric coupling. The anti-resonance of permittivity is a non-inherent feature for passive materials, while it can be inherent for devices or metamaterials. Our finding validates that the negative imaginary part of effective permittivity does not contradict the second law of thermodynamics for metamaterials owing to the magnetoelectric coupling.