针对田间玉米冠层叶色变化难以定量描述问题,该文利用田间原位冠层监测系统,在摄像机自动曝光模式下连续采集多个玉米品种的冠层图像,揭示了复杂天气条件对图像和玉米冠层颜色的影响。利用概率密度统计分析方法分别计算玉米6个关键生育...针对田间玉米冠层叶色变化难以定量描述问题,该文利用田间原位冠层监测系统,在摄像机自动曝光模式下连续采集多个玉米品种的冠层图像,揭示了复杂天气条件对图像和玉米冠层颜色的影响。利用概率密度统计分析方法分别计算玉米6个关键生育期的冠层亮度-色度分布,并针对冠层色度具有明确变化趋势且分离度较高的冠层亮度区间,建立了全生育期玉米冠层叶色模型。进而,基于该模型建立了适合不同玉米生育期的冠层图像自动分割方法,将玉米全生育期的冠层图像分割精度提升到82.6%,并揭示了不同品种玉米在叶片发育过程中冠层叶色与叶龄的相关性,利用登海605和农大108的冠层叶色预测出的生育期叶龄均方根误差RMSE(root mean squared error,RMSE)分别为1.14和1.41叶。试验结果表明,该文建立的玉米冠层叶色模型能够较好描述玉米关键生育期的冠层叶色变化规律,对玉米冠层图像分割、生育期估计、玉米品种表型鉴定具有重要意义。展开更多
文摘针对田间玉米冠层叶色变化难以定量描述问题,该文利用田间原位冠层监测系统,在摄像机自动曝光模式下连续采集多个玉米品种的冠层图像,揭示了复杂天气条件对图像和玉米冠层颜色的影响。利用概率密度统计分析方法分别计算玉米6个关键生育期的冠层亮度-色度分布,并针对冠层色度具有明确变化趋势且分离度较高的冠层亮度区间,建立了全生育期玉米冠层叶色模型。进而,基于该模型建立了适合不同玉米生育期的冠层图像自动分割方法,将玉米全生育期的冠层图像分割精度提升到82.6%,并揭示了不同品种玉米在叶片发育过程中冠层叶色与叶龄的相关性,利用登海605和农大108的冠层叶色预测出的生育期叶龄均方根误差RMSE(root mean squared error,RMSE)分别为1.14和1.41叶。试验结果表明,该文建立的玉米冠层叶色模型能够较好描述玉米关键生育期的冠层叶色变化规律,对玉米冠层图像分割、生育期估计、玉米品种表型鉴定具有重要意义。