Super rice breeding in China has been very successful over the past 3 decades, and the Chinese government has made great efforts to support breeding and cultivation of both conventional and hybrid super rice. In this ...Super rice breeding in China has been very successful over the past 3 decades, and the Chinese government has made great efforts to support breeding and cultivation of both conventional and hybrid super rice. In this review, we focus on the progress in and potential of super rice breeding. After the establishment of the breeding theory and strategy of "generating an ideotype with strong heterosis through inter-subspecies hybridization, by using gene pyramiding to combine elite traits through composite-crossing to breed super rice varieties with both ideotype and strong hybrid vigor", a series of major breakthroughs have been achieved in both conventional and super hybrid rice breeding. A number of new genetic materials with ideotype have been created successfully, and the Ministry of Agriculture of China has approved 156 novel super rice varieties and combinations for commercialization. During the Developing the Super Rice Varieties Program, great attention has also been paid to the integration and demonstration of the rice production technology. Collaboration between industry and university researchers has led to technological innovations and initiation of a demonstration system for super hybrid rice. With widespread cultivation of super rice with higher quality and yield, as well as resistance or tolerance to abiotic or biotic stresses, the yield of rice production per unit has reached a new level. In addition to increased quality and yield, hybrid rice breeding has also led to improvements in many other agronomic traits, such as resistance to pests and diseases, resistance to lodging, and optimized light distribution in population. Achievements in super rice breeding and innovation in rice production have made major contributions to the progress in rice sciences and worldwide food security.展开更多
An increase in productivity is always one of the main goals of any crop breeding program including rice. However, many goals can be identified for this crop varying in importance from region to region, country to coun...An increase in productivity is always one of the main goals of any crop breeding program including rice. However, many goals can be identified for this crop varying in importance from region to region, country to country, and even within a given country. Increase in grain yield potential is the major goal of almost all rice breeders programs. The major impacts are related to the development of new strategies to increase the genetic grain yield potential of the varieties. Rice breeders have been very successful in improving the crop. Some milestones are the contribution to the green revolution with the semi-dwarf varieties, the new rice plant type and hybrid rice. The main breeding method used to improve rice is the pedigree, but development of hybrids and population improvement are added to the breeder’s portfolio. Breeders have been taking advantage of biotechnology tools to enhance their breeding capacity;however, many programs are still struggling on how to integrate them into the breeding programs and how to balance the allocation of resources between conventional and modern tools.展开更多
To address the global demand for rapeseed while considering farmers’profit,we face the challenges of making a quantum leap in seed yield and,at the same time,reducing yield loss due to biotic and abiotic stresses.We ...To address the global demand for rapeseed while considering farmers’profit,we face the challenges of making a quantum leap in seed yield and,at the same time,reducing yield loss due to biotic and abiotic stresses.We also face the challenge of efficiently applying new transformative biotechnology tools such as gene editing and breeding by genome design to increase rapeseed productivity and profitability.In this Perspective,we review advances in research on the physiological and genetic bases of both stress factorsaffected yield stability and seed yield potential,focusing on source–sink relationships and allocation of photosynthetic assimilates to vegetative growth and seed development.We propose research directions and highlight the role of plant architecture in the relative contributions of the root system,leaves,and pods to seed yield.We call for de novo design of new rapeseed crops.We review trait variation in existing germplasm and biotechnologies available for crop design.Finally,we discuss opportunities to apply fundamental knowledge and key germplasm to rapeseed production and propose an ideotype for de novo design of future rapeseed cultivars.展开更多
The objective of this paper is to present a new ideotype of grain legume cultivar and show improvements in breeding from the introduction of the terminal inflorescence (ti) gene in field bean, and the introduction o...The objective of this paper is to present a new ideotype of grain legume cultivar and show improvements in breeding from the introduction of the terminal inflorescence (ti) gene in field bean, and the introduction of the restricted branching (rb) gene in three lupin crops--narrow-leafed lupin, white lupin and yellow lupin. Field trials using control cultivars were conducted at the Research Center for Cultivar Testing in Poland. For each species, different trial periods were selected in which new cultivars with ti/rb genes were registered. A breeding progress was estimated by a comparison of a new cultivar to control--bridge cultivar to the next trial period. Over the past twenty years cultivar improvement using ti/rb genes has proceeded differently in these species. The newest, self-completing legume cultivars have yields comparable to traditional ones and generally are earlier and more uniform when mature. This paper shows that breeding progress in rb yellow lupin is outstanding; in rb narrow-leafed lupin and ti field bean is favorable; and in rb white lupin is moderate.展开更多
Before starting a breeding program for a specific crop or variety, it can be helpful to know how traits behave in determining yield under different conditions and environments. Crop growth models can be used to genera...Before starting a breeding program for a specific crop or variety, it can be helpful to know how traits behave in determining yield under different conditions and environments. Crop growth models can be used to generate valuable information on the relevance of specific traits for an environment of interest. In this paper, the simulation model CMS-Cropsim-CERES- Wheat was used to test the performance of input parameters which describe cultivar differences concerning plant development and grain yield. In so-called ideotyping sequences, the specific cultivar parameters were varied and the model was run with the same management information in four different scenarios. The scenarios consisted of two locations, Wuqiao (37.3°N, 116.3°E) and Quzhou (36.5°N, 115°E) in Hebei Province (North China Plain), and a dry and a wet growing season for each location. The input parameter G1 (corresponding trait: kernel number per spike) followed by G2 (corresponding trait: kernel weight) had the biggest influence on yield over all scenarios. The input parameters P1V (corresponding trait: vernalization requirement) and P1D (corresponding trait: photoperiod response) also played an important role in determining yield. In the dry scenarios a low response in vernalization and photoperiod generated a higher yield compared to a high response. The lower responses caused earliness and the period of late water stress was avoided. The last relevant parameter that affected yield was PHINT (corresponding trait: leaf area of first leaf). The simulation showed that with an increasing PHINT, yield was enhanced over all scenarios. Based on the results obtained in this study, plant breeders could carefully select the relevant traits and integrate them in their breeding program for a specific region.展开更多
基金supported by the National Key Research and Development Program of China(2016YFD0300504)the earmarked fund for China Agriculture Research System(CARS-01-13)the Special Fund for Agro-scientific Research in the Public Interest,China(201603002)
文摘Super rice breeding in China has been very successful over the past 3 decades, and the Chinese government has made great efforts to support breeding and cultivation of both conventional and hybrid super rice. In this review, we focus on the progress in and potential of super rice breeding. After the establishment of the breeding theory and strategy of "generating an ideotype with strong heterosis through inter-subspecies hybridization, by using gene pyramiding to combine elite traits through composite-crossing to breed super rice varieties with both ideotype and strong hybrid vigor", a series of major breakthroughs have been achieved in both conventional and super hybrid rice breeding. A number of new genetic materials with ideotype have been created successfully, and the Ministry of Agriculture of China has approved 156 novel super rice varieties and combinations for commercialization. During the Developing the Super Rice Varieties Program, great attention has also been paid to the integration and demonstration of the rice production technology. Collaboration between industry and university researchers has led to technological innovations and initiation of a demonstration system for super hybrid rice. With widespread cultivation of super rice with higher quality and yield, as well as resistance or tolerance to abiotic or biotic stresses, the yield of rice production per unit has reached a new level. In addition to increased quality and yield, hybrid rice breeding has also led to improvements in many other agronomic traits, such as resistance to pests and diseases, resistance to lodging, and optimized light distribution in population. Achievements in super rice breeding and innovation in rice production have made major contributions to the progress in rice sciences and worldwide food security.
文摘An increase in productivity is always one of the main goals of any crop breeding program including rice. However, many goals can be identified for this crop varying in importance from region to region, country to country, and even within a given country. Increase in grain yield potential is the major goal of almost all rice breeders programs. The major impacts are related to the development of new strategies to increase the genetic grain yield potential of the varieties. Rice breeders have been very successful in improving the crop. Some milestones are the contribution to the green revolution with the semi-dwarf varieties, the new rice plant type and hybrid rice. The main breeding method used to improve rice is the pedigree, but development of hybrids and population improvement are added to the breeder’s portfolio. Breeders have been taking advantage of biotechnology tools to enhance their breeding capacity;however, many programs are still struggling on how to integrate them into the breeding programs and how to balance the allocation of resources between conventional and modern tools.
基金the National Natural Science Foundation of China(U20A2034 and 32070217)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ZDRW202105 and CAASASTIP-2013-OCRI)。
文摘To address the global demand for rapeseed while considering farmers’profit,we face the challenges of making a quantum leap in seed yield and,at the same time,reducing yield loss due to biotic and abiotic stresses.We also face the challenge of efficiently applying new transformative biotechnology tools such as gene editing and breeding by genome design to increase rapeseed productivity and profitability.In this Perspective,we review advances in research on the physiological and genetic bases of both stress factorsaffected yield stability and seed yield potential,focusing on source–sink relationships and allocation of photosynthetic assimilates to vegetative growth and seed development.We propose research directions and highlight the role of plant architecture in the relative contributions of the root system,leaves,and pods to seed yield.We call for de novo design of new rapeseed crops.We review trait variation in existing germplasm and biotechnologies available for crop design.Finally,we discuss opportunities to apply fundamental knowledge and key germplasm to rapeseed production and propose an ideotype for de novo design of future rapeseed cultivars.
文摘The objective of this paper is to present a new ideotype of grain legume cultivar and show improvements in breeding from the introduction of the terminal inflorescence (ti) gene in field bean, and the introduction of the restricted branching (rb) gene in three lupin crops--narrow-leafed lupin, white lupin and yellow lupin. Field trials using control cultivars were conducted at the Research Center for Cultivar Testing in Poland. For each species, different trial periods were selected in which new cultivars with ti/rb genes were registered. A breeding progress was estimated by a comparison of a new cultivar to control--bridge cultivar to the next trial period. Over the past twenty years cultivar improvement using ti/rb genes has proceeded differently in these species. The newest, self-completing legume cultivars have yields comparable to traditional ones and generally are earlier and more uniform when mature. This paper shows that breeding progress in rb yellow lupin is outstanding; in rb narrow-leafed lupin and ti field bean is favorable; and in rb white lupin is moderate.
文摘Before starting a breeding program for a specific crop or variety, it can be helpful to know how traits behave in determining yield under different conditions and environments. Crop growth models can be used to generate valuable information on the relevance of specific traits for an environment of interest. In this paper, the simulation model CMS-Cropsim-CERES- Wheat was used to test the performance of input parameters which describe cultivar differences concerning plant development and grain yield. In so-called ideotyping sequences, the specific cultivar parameters were varied and the model was run with the same management information in four different scenarios. The scenarios consisted of two locations, Wuqiao (37.3°N, 116.3°E) and Quzhou (36.5°N, 115°E) in Hebei Province (North China Plain), and a dry and a wet growing season for each location. The input parameter G1 (corresponding trait: kernel number per spike) followed by G2 (corresponding trait: kernel weight) had the biggest influence on yield over all scenarios. The input parameters P1V (corresponding trait: vernalization requirement) and P1D (corresponding trait: photoperiod response) also played an important role in determining yield. In the dry scenarios a low response in vernalization and photoperiod generated a higher yield compared to a high response. The lower responses caused earliness and the period of late water stress was avoided. The last relevant parameter that affected yield was PHINT (corresponding trait: leaf area of first leaf). The simulation showed that with an increasing PHINT, yield was enhanced over all scenarios. Based on the results obtained in this study, plant breeders could carefully select the relevant traits and integrate them in their breeding program for a specific region.