The rapid decrease in Arctic sea ice cover and thickness not only has a linkage with extreme weather in the midlatitudes but also brings more opportunities for Arctic shipping routes and polar resource exploration,bot...The rapid decrease in Arctic sea ice cover and thickness not only has a linkage with extreme weather in the midlatitudes but also brings more opportunities for Arctic shipping routes and polar resource exploration,both of which motivate us to further understand causes of sea-ice variations and to obtain more accurate estimates of seaice cover in the future.Here,a novel data-driven method,the causal effect networks algorithm,is applied to identify the direct precursors of September sea-ice extent covering the Northern Sea Route and Transpolar Sea Route at different lead times so that statistical models can be constructed for sea-ice prediction.The whole study area was also divided into two parts:the northern region covered by multiyear ice and the southern region covered by seasonal ice.The forecast models of September sea-ice extent in the whole study area(TSIE)and southern region(SSIE)at lead times of 1–4 months can explain over 65%and 79%of the variances,respectively,but the forecast skill of sea-ice extent in the northern region(NSIE)is limited at a lead time of 1 month.At lead times of 1–4 months,local sea-ice concentration and sea-ice thickness have a larger influence on September TSIE and SSIE than other teleconnection factors.When the lead time is more than 4 months,the surface meridional wind anomaly from northern Europe in the preceding autumn or early winter is dominant for September TSIE variations but is comparable to thermodynamic factors for NSIE and SSIE.We suggest that this study provides a complementary approach for predicting regional sea ice and is helpful in evaluating and improving climate models.展开更多
In this study,we assess the potential of X-band Interferometric Synthetic Aperture Radar imagery for automated classification of sea ice over the Baltic Sea.A bistatic SAR scene acquired by the TanDEM-X mission over t...In this study,we assess the potential of X-band Interferometric Synthetic Aperture Radar imagery for automated classification of sea ice over the Baltic Sea.A bistatic SAR scene acquired by the TanDEM-X mission over the Bothnian Bay in March of 2012 was used in the analysis.Backscatter intensity,interferometric coherence magnitude,and interferometric phase have been used as informative features in several classification experiments.Various combinations of classification features were evaluated using Maximum likelihood(ML),Random Forests(RF)and Support Vector Machine(SVM)classifiers to achieve the best possible discrimination between open water and several sea ice types(undeformed ice,ridged ice,moderately deformed ice,brash ice,thick level ice,and new ice).Adding interferometric phase and coherence-magnitude to backscatter-intensity resulted in improved overall classification per-formance compared to using only backscatter-intensity.The RF algorithm appeared to be slightly superior to SVM and ML due to higher overall accuracies,however,at the expense of somewhat longer processing time.The best overall accuracy(OA)for three methodologies were achieved using combination of all tested features were 71.56,72.93,and 72.91%for ML,RF and SVM classifiers,respectively.Compared to OAs of 62.28,66.51,and 63.05%using only backscatter intensity,this indicates strong benefit of SAR interferometry in discriminating different types of sea ice.In contrast to several earlier studies,we were particularly able to successfully discriminate open water and new ice classes.展开更多
基金The National Key Research and Development Program of China under contract Nos 2016YFF0202705 and2018YFA0605904the Joint Institute for the Study of the Atmosphere and Ocean(JISAO)under contract NOAA Cooperative Agreement NA15OAR4320063,contribution No.2019-1044,and PMEL contribution No.5052。
文摘The rapid decrease in Arctic sea ice cover and thickness not only has a linkage with extreme weather in the midlatitudes but also brings more opportunities for Arctic shipping routes and polar resource exploration,both of which motivate us to further understand causes of sea-ice variations and to obtain more accurate estimates of seaice cover in the future.Here,a novel data-driven method,the causal effect networks algorithm,is applied to identify the direct precursors of September sea-ice extent covering the Northern Sea Route and Transpolar Sea Route at different lead times so that statistical models can be constructed for sea-ice prediction.The whole study area was also divided into two parts:the northern region covered by multiyear ice and the southern region covered by seasonal ice.The forecast models of September sea-ice extent in the whole study area(TSIE)and southern region(SSIE)at lead times of 1–4 months can explain over 65%and 79%of the variances,respectively,but the forecast skill of sea-ice extent in the northern region(NSIE)is limited at a lead time of 1 month.At lead times of 1–4 months,local sea-ice concentration and sea-ice thickness have a larger influence on September TSIE and SSIE than other teleconnection factors.When the lead time is more than 4 months,the surface meridional wind anomaly from northern Europe in the preceding autumn or early winter is dominant for September TSIE variations but is comparable to thermodynamic factors for NSIE and SSIE.We suggest that this study provides a complementary approach for predicting regional sea ice and is helpful in evaluating and improving climate models.
基金This research was supported by Academy of Finland under Grant no.296628.
文摘In this study,we assess the potential of X-band Interferometric Synthetic Aperture Radar imagery for automated classification of sea ice over the Baltic Sea.A bistatic SAR scene acquired by the TanDEM-X mission over the Bothnian Bay in March of 2012 was used in the analysis.Backscatter intensity,interferometric coherence magnitude,and interferometric phase have been used as informative features in several classification experiments.Various combinations of classification features were evaluated using Maximum likelihood(ML),Random Forests(RF)and Support Vector Machine(SVM)classifiers to achieve the best possible discrimination between open water and several sea ice types(undeformed ice,ridged ice,moderately deformed ice,brash ice,thick level ice,and new ice).Adding interferometric phase and coherence-magnitude to backscatter-intensity resulted in improved overall classification per-formance compared to using only backscatter-intensity.The RF algorithm appeared to be slightly superior to SVM and ML due to higher overall accuracies,however,at the expense of somewhat longer processing time.The best overall accuracy(OA)for three methodologies were achieved using combination of all tested features were 71.56,72.93,and 72.91%for ML,RF and SVM classifiers,respectively.Compared to OAs of 62.28,66.51,and 63.05%using only backscatter intensity,this indicates strong benefit of SAR interferometry in discriminating different types of sea ice.In contrast to several earlier studies,we were particularly able to successfully discriminate open water and new ice classes.