Ion-exchange Polymer Metal Composites (IPMC) are a new class of intelligent material that can be used effectively as actuators and artificial muscles. IPMC was fabricated and its displacement and force characteristi...Ion-exchange Polymer Metal Composites (IPMC) are a new class of intelligent material that can be used effectively as actuators and artificial muscles. IPMC was fabricated and its displacement and force characteristics were investigated with respect to voltage, frequency and waveform of the controlling signal. A square waveform input generated slightly larger displacement and force than sinusoidal or triangular waveform. When the voltage was increased and the frequency was decreased, displacement and force were both increased. However, although the bending deformation of IPMC was large, the output force was much lower than we expected. Improvement of the force output is key and is the main obstacle to be overcome in order to make IPMC of practical use.展开更多
Ionic Polymer-Metal Composite (IPMC) is a new electro-active polymer, which has the advantages of light weight, flexibility, and large stroke with low driving voltage. Because of these features, IPMC can be applied ...Ionic Polymer-Metal Composite (IPMC) is a new electro-active polymer, which has the advantages of light weight, flexibility, and large stroke with low driving voltage. Because of these features, IPMC can be applied to bionic robotic actuators, artificial muscles, as well as dynamic sensors. However, IPMC has the major drawback of low generative blocking force. In this paper, in order to enhance the blocking force, the Nation membranes with thickness of 0.22 mm, 0.32 mm, 0.42 mm, 0.64 mm and 0.8 mm were prepared by casting from liquid solution. By employing these Nation membranes, IPMCs with varying thickness were fabricated by electroless plating. The elastic modulus of the casted Nation membranes were obtained by a nano-indenter, and the current, the displacement and the blocking force were respectively measured by the apparatus for actuation test. Finally, the effects of the thickness on the performance of IPMC were analyzed with an electromechanical model. Experimental study and theory analysis indicate that as the thickness increases, the elastic modulus of Nation membrane and the blocking force of IPMC increase, however, the current and the displacement decrease.展开更多
This paper reports a new technique to fabricate an ion-exchange polymer-metal composite (IPMC) actuator. This technique is based on a hybrid organic-inorganic composite membrane. In the fabrication course, silica oxid...This paper reports a new technique to fabricate an ion-exchange polymer-metal composite (IPMC) actuator. This technique is based on a hybrid organic-inorganic composite membrane. In the fabrication course, silica oxide particles, prepared from hydrolysis of tetraethyl orthosilicate in situ with sol-gel reaction, co-crystallize with perfluorosulfonate acid (PFSA) ionomer. Attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR) analyses demonstrate that a highly water-saving hybrid membrane is formed. Measurements of mechanical properties reveal that elastic modulus and hardness of the hybrid membrane are about 2 times compared to a commercial PFSA membrane. Scanning electron microscopy (SEM) results show that the hybrid membrane has a high porosity. Inside the membrane pores, there exists a great quantity of micro scale channels in the range of 100―300 nm. After fabrication of IPMC actuator, an electric current sensor, a force sensor, and a high speed camera are assembled and used to evaluate IPMC performance. It is shown that, compared to an IPMC actuator made from a commercial membrane, the electromechanical performance of the new actuator increases 6―8 times; when it is actuated in air, its stable non-water working time is prolonged for 6―7 times.展开更多
IPMC(ion-exchange polymer metal com-posite)离子交换聚合物-金属复合材料)是一种人工肌肉材料,其较低的驱动电压能产生较大的位移变形,研究了IPMC这种智能材料的输出力特性。实验选取了不同电压幅值,不同频率的方波、三角波、正弦波...IPMC(ion-exchange polymer metal com-posite)离子交换聚合物-金属复合材料)是一种人工肌肉材料,其较低的驱动电压能产生较大的位移变形,研究了IPMC这种智能材料的输出力特性。实验选取了不同电压幅值,不同频率的方波、三角波、正弦波3种波形作为电激励信号,通过力传感器实测了IPMC试样末端的输出力。结果表明,随着电压幅值的增大,其输出力也增大;随着电刺激信号频率的降低,其输出力也增大;而波形对其输出力影响不显著。展开更多
离子聚合物金属复合材料(Ionic Polymer Metal Composite)作为新型的电致动材料具有巨大的应用潜力。但就目前国内外研究结果显示,现有的IPMC电致动材料仍具有一个显著的的缺点:非水工作时间短。本文通过用离子液体1-乙基-3-甲基咪唑硫...离子聚合物金属复合材料(Ionic Polymer Metal Composite)作为新型的电致动材料具有巨大的应用潜力。但就目前国内外研究结果显示,现有的IPMC电致动材料仍具有一个显著的的缺点:非水工作时间短。本文通过用离子液体1-乙基-3-甲基咪唑硫氰酸盐(EMImSCN)替代水作为IPMC中的溶剂,以此来提高IPMC的非水工作时间。实验结果表明:在4V正弦交流电压下,当IPMC在空气中作用时间延长至320s时,以水为介质的IPMC位移减小了93%,位移大小几乎为0,而以[EMIm]SCN为介质的IPMC位移减小了63%,并长期处于一个稳定的位移值不变。展开更多
基金support from National Natural Science Foundation of China(60535020,90205014)the National High Technology Research and Development Program of China(863 Program)(2002AA423230).
文摘Ion-exchange Polymer Metal Composites (IPMC) are a new class of intelligent material that can be used effectively as actuators and artificial muscles. IPMC was fabricated and its displacement and force characteristics were investigated with respect to voltage, frequency and waveform of the controlling signal. A square waveform input generated slightly larger displacement and force than sinusoidal or triangular waveform. When the voltage was increased and the frequency was decreased, displacement and force were both increased. However, although the bending deformation of IPMC was large, the output force was much lower than we expected. Improvement of the force output is key and is the main obstacle to be overcome in order to make IPMC of practical use.
基金Acknowledgement The authors thank the financial support from the National Natural Science Foundation of China (Grant No. 50705043, 60535020 and 60910007).
文摘Ionic Polymer-Metal Composite (IPMC) is a new electro-active polymer, which has the advantages of light weight, flexibility, and large stroke with low driving voltage. Because of these features, IPMC can be applied to bionic robotic actuators, artificial muscles, as well as dynamic sensors. However, IPMC has the major drawback of low generative blocking force. In this paper, in order to enhance the blocking force, the Nation membranes with thickness of 0.22 mm, 0.32 mm, 0.42 mm, 0.64 mm and 0.8 mm were prepared by casting from liquid solution. By employing these Nation membranes, IPMCs with varying thickness were fabricated by electroless plating. The elastic modulus of the casted Nation membranes were obtained by a nano-indenter, and the current, the displacement and the blocking force were respectively measured by the apparatus for actuation test. Finally, the effects of the thickness on the performance of IPMC were analyzed with an electromechanical model. Experimental study and theory analysis indicate that as the thickness increases, the elastic modulus of Nation membrane and the blocking force of IPMC increase, however, the current and the displacement decrease.
基金Supported by the National Natural Key Science Foundation of China (Grant No. 60535020)National Natural Science Foundation of China (Grant Nos. 50705043 and 50805076)Natural Science Foundation of Jiangsu Province (Grant No. 2007202)
文摘This paper reports a new technique to fabricate an ion-exchange polymer-metal composite (IPMC) actuator. This technique is based on a hybrid organic-inorganic composite membrane. In the fabrication course, silica oxide particles, prepared from hydrolysis of tetraethyl orthosilicate in situ with sol-gel reaction, co-crystallize with perfluorosulfonate acid (PFSA) ionomer. Attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR) analyses demonstrate that a highly water-saving hybrid membrane is formed. Measurements of mechanical properties reveal that elastic modulus and hardness of the hybrid membrane are about 2 times compared to a commercial PFSA membrane. Scanning electron microscopy (SEM) results show that the hybrid membrane has a high porosity. Inside the membrane pores, there exists a great quantity of micro scale channels in the range of 100―300 nm. After fabrication of IPMC actuator, an electric current sensor, a force sensor, and a high speed camera are assembled and used to evaluate IPMC performance. It is shown that, compared to an IPMC actuator made from a commercial membrane, the electromechanical performance of the new actuator increases 6―8 times; when it is actuated in air, its stable non-water working time is prolonged for 6―7 times.
文摘IPMC(ion-exchange polymer metal com-posite)离子交换聚合物-金属复合材料)是一种人工肌肉材料,其较低的驱动电压能产生较大的位移变形,研究了IPMC这种智能材料的输出力特性。实验选取了不同电压幅值,不同频率的方波、三角波、正弦波3种波形作为电激励信号,通过力传感器实测了IPMC试样末端的输出力。结果表明,随着电压幅值的增大,其输出力也增大;随着电刺激信号频率的降低,其输出力也增大;而波形对其输出力影响不显著。
文摘离子聚合物金属复合材料(Ionic Polymer Metal Composite)作为新型的电致动材料具有巨大的应用潜力。但就目前国内外研究结果显示,现有的IPMC电致动材料仍具有一个显著的的缺点:非水工作时间短。本文通过用离子液体1-乙基-3-甲基咪唑硫氰酸盐(EMImSCN)替代水作为IPMC中的溶剂,以此来提高IPMC的非水工作时间。实验结果表明:在4V正弦交流电压下,当IPMC在空气中作用时间延长至320s时,以水为介质的IPMC位移减小了93%,位移大小几乎为0,而以[EMIm]SCN为介质的IPMC位移减小了63%,并长期处于一个稳定的位移值不变。