In view of the usefulness of Empirical Mode Decomposition (EMD), Artificial Neural Networks ( ANN), and Most Relevant Matching Extension (MRME) methods in dealing with nonlinear signals, we pro- pose a new way o...In view of the usefulness of Empirical Mode Decomposition (EMD), Artificial Neural Networks ( ANN), and Most Relevant Matching Extension (MRME) methods in dealing with nonlinear signals, we pro- pose a new way of combining these methods to deal with signal prediction. We found the results of combining EMD with either ANN or MRME to have higher prediction precision for a time series than the result of using EMD alone.展开更多
利用本征模态函数的正交分解方法对日长(LOD,length of day)数据序列进行分解,得到了日长变化的101个正交本征模态函数。通过对其中几个主要模态函数进行分析,发现日月地的相对位置与其中几个模态函数极值发生的时间极其吻合,并据此推...利用本征模态函数的正交分解方法对日长(LOD,length of day)数据序列进行分解,得到了日长变化的101个正交本征模态函数。通过对其中几个主要模态函数进行分析,发现日月地的相对位置与其中几个模态函数极值发生的时间极其吻合,并据此推断出日长变化的主要激发源。同时还发现日长变化存在准周期约为206 d的波动。展开更多
基金supporteal by the Notional Natural Scince Foundation of Hebei Province(D201000921)
文摘In view of the usefulness of Empirical Mode Decomposition (EMD), Artificial Neural Networks ( ANN), and Most Relevant Matching Extension (MRME) methods in dealing with nonlinear signals, we pro- pose a new way of combining these methods to deal with signal prediction. We found the results of combining EMD with either ANN or MRME to have higher prediction precision for a time series than the result of using EMD alone.
文摘利用本征模态函数的正交分解方法对日长(LOD,length of day)数据序列进行分解,得到了日长变化的101个正交本征模态函数。通过对其中几个主要模态函数进行分析,发现日月地的相对位置与其中几个模态函数极值发生的时间极其吻合,并据此推断出日长变化的主要激发源。同时还发现日长变化存在准周期约为206 d的波动。
基金湖南省自然科学基金(the Natural Science Foundation of Hunan Province of China under Grant No.05JJ30123)湖南省教育厅科学研究项目(the Scientific Research Program of Hunan Provincial Education Department No.05C246)