Silicon physical unclonable function (PUF) is a popular hardware security primitive that exploits the intrinsic variation of IC manufacturing process to generate chip-unique information for various security related ...Silicon physical unclonable function (PUF) is a popular hardware security primitive that exploits the intrinsic variation of IC manufacturing process to generate chip-unique information for various security related applications. For example, the PUF information can be used as a chip identifier, a secret key, the seed for a random number generator, or the response to a given challenge. Due to the unpredictability and irreplicability of IC manufacturing variation, silicon PUF has emerged as a promising hardware security primitive and gained a lot of attention over the past few years. In this article, we first give a survey on the current state-of-the-art of silicon PUFs, then analyze known attacks to PUFs and the countermeasures. After that we discuss PUF-based applications, highlight some recent research advances in ring oscillator PUFs, and conclude with some challenges and opportunities in PUF research and applications.展开更多
Hardware security has become more and more important in current information security architecture. Recently collected reports have shown that there may have been considerable hardware attacks prepared for possible mil...Hardware security has become more and more important in current information security architecture. Recently collected reports have shown that there may have been considerable hardware attacks prepared for possible military usage from all over the world. Due to the intrinsic difference from software security, hardware security has some special features and challenges. In order to guarantee hardware security, academia has proposed the concept of trusted integrated circuits,which aims at a secure circulation of IC design, manufacture and chip using. This paper reviews the main problems of trusted integrated circuits, and concludes four key domains of the trusted IC, namely the trusted IC design, trusted manufacture,trusted IP protection, and trusted chip authentication. The main challenges in those domains are also analyzed based on the current known techniques. Finally, the main limitations of the current techniques and possible future trends are discussed.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No.61228204the scholarship from China Scholarship Council under Grant No.201306130042the Ph.D.Candidates’ Innovative Research Project of Hunan Province of China under Grant No.CX2012B142
文摘Silicon physical unclonable function (PUF) is a popular hardware security primitive that exploits the intrinsic variation of IC manufacturing process to generate chip-unique information for various security related applications. For example, the PUF information can be used as a chip identifier, a secret key, the seed for a random number generator, or the response to a given challenge. Due to the unpredictability and irreplicability of IC manufacturing variation, silicon PUF has emerged as a promising hardware security primitive and gained a lot of attention over the past few years. In this article, we first give a survey on the current state-of-the-art of silicon PUFs, then analyze known attacks to PUFs and the countermeasures. After that we discuss PUF-based applications, highlight some recent research advances in ring oscillator PUFs, and conclude with some challenges and opportunities in PUF research and applications.
基金supported by the National Natural Science Foundation of China under Grant No.61228204the National Scienceand Technology Major Project of China under Grant No.2013ZX01039001-002-003
文摘Hardware security has become more and more important in current information security architecture. Recently collected reports have shown that there may have been considerable hardware attacks prepared for possible military usage from all over the world. Due to the intrinsic difference from software security, hardware security has some special features and challenges. In order to guarantee hardware security, academia has proposed the concept of trusted integrated circuits,which aims at a secure circulation of IC design, manufacture and chip using. This paper reviews the main problems of trusted integrated circuits, and concludes four key domains of the trusted IC, namely the trusted IC design, trusted manufacture,trusted IP protection, and trusted chip authentication. The main challenges in those domains are also analyzed based on the current known techniques. Finally, the main limitations of the current techniques and possible future trends are discussed.