The double layered hydroxide with hydrotalcite structure was prepared by a hydrothermal method from two mixtures:MgSO 4·7H 2O with Al 2(SO 4) 3·18H 2O and NaOH with Na 2CO 3. It is found that increasing the ...The double layered hydroxide with hydrotalcite structure was prepared by a hydrothermal method from two mixtures:MgSO 4·7H 2O with Al 2(SO 4) 3·18H 2O and NaOH with Na 2CO 3. It is found that increasing the ageing temperature and ageing time of the hydrothermal process was favorable for the formation of hydrotalcite structure, and the crystal size of the products could be controlled by varying ageing temperature and time.展开更多
By varying the hydrolysis and hydrothermal processing parameters in preparing TiO2 nanoparticles different sizes of TiO2 nanoparticles are obtained.(1) At higher autoclaving temperature,lower pH and longer autoclaving...By varying the hydrolysis and hydrothermal processing parameters in preparing TiO2 nanoparticles different sizes of TiO2 nanoparticles are obtained.(1) At higher autoclaving temperature,lower pH and longer autoclaving period,larger sizes of TiO2 nanoparticles are prepared.(2) The nanoporous electrodes made from sintering smaller TiO2 nanoparticles show relatively poor IPCE and low absorption in UV-Vis spectrum,(3) Higher IPCE can be achieved with TiO2 nanoporous electrodes made from sintering larger TiO2 nanoparticles.These electrodes are suitable for studying behavior of the photoelectrochemistry of dye sensitized nanoporous electrodes.展开更多
Using Fe doped titania powders as the precursor, Fe doped TiO2 nanotubes with small diameter of 10nm were obtained by hydrothermal method. The doped titania powders have two different crystalline phases, anatase and r...Using Fe doped titania powders as the precursor, Fe doped TiO2 nanotubes with small diameter of 10nm were obtained by hydrothermal method. The doped titania powders have two different crystalline phases, anatase and rutile of which the average particle diameters are 30.3nm and 41.7nm, receptively. The products were characterized by TEM, XRD and EDS. The results showed that Fe doped TiO2 nanotubes of 200nm in length could be obtained from Fe doped rutile powder, and have higher yields. The formation mechanism of long titania nanotubes was suggested in the light of the relative stability of crystalline phase.展开更多
文摘The double layered hydroxide with hydrotalcite structure was prepared by a hydrothermal method from two mixtures:MgSO 4·7H 2O with Al 2(SO 4) 3·18H 2O and NaOH with Na 2CO 3. It is found that increasing the ageing temperature and ageing time of the hydrothermal process was favorable for the formation of hydrotalcite structure, and the crystal size of the products could be controlled by varying ageing temperature and time.
文摘By varying the hydrolysis and hydrothermal processing parameters in preparing TiO2 nanoparticles different sizes of TiO2 nanoparticles are obtained.(1) At higher autoclaving temperature,lower pH and longer autoclaving period,larger sizes of TiO2 nanoparticles are prepared.(2) The nanoporous electrodes made from sintering smaller TiO2 nanoparticles show relatively poor IPCE and low absorption in UV-Vis spectrum,(3) Higher IPCE can be achieved with TiO2 nanoporous electrodes made from sintering larger TiO2 nanoparticles.These electrodes are suitable for studying behavior of the photoelectrochemistry of dye sensitized nanoporous electrodes.
文摘Using Fe doped titania powders as the precursor, Fe doped TiO2 nanotubes with small diameter of 10nm were obtained by hydrothermal method. The doped titania powders have two different crystalline phases, anatase and rutile of which the average particle diameters are 30.3nm and 41.7nm, receptively. The products were characterized by TEM, XRD and EDS. The results showed that Fe doped TiO2 nanotubes of 200nm in length could be obtained from Fe doped rutile powder, and have higher yields. The formation mechanism of long titania nanotubes was suggested in the light of the relative stability of crystalline phase.