Carbon nanotube film(CNTF)can be used for photocatalysis and water treatment due to its porous structure,good stability and excellent electrical properties.In this work,TiO_(2)/amorphous carbon/carbon nanotube film(TC...Carbon nanotube film(CNTF)can be used for photocatalysis and water treatment due to its porous structure,good stability and excellent electrical properties.In this work,TiO_(2)/amorphous carbon/carbon nanotube film(TCC)composite with uniform structure was prepared by a simple atomization spraying method.Rhodamine B(RhB)was used to test the photocatalytic activity of TCC.TCC composite exhibits good photocatalytic activity under ultraviolet light.In particular,the degradation efficiency of rhodamine B(RhB)by TCC sprayed with 9 layers of TiO_(2)(9 TCC)increased by 1.45 times than of TiO_(2) under ultraviolet light.The enhanced photocatalytic activity of TCC is attributed to the CNTF,which can broaden the light response range of TCC and improve the migration efficiency of electrons.The existence of amorphous carbon will promote these advances.Moreover,the better hydrophilic properties would enhance the catalytic performance happened on the solid-liquid interface.Finally,the photocatalytic mechanism and degradation intermediates of the TCC composite were proposed.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21872102 and 21906001)。
文摘Carbon nanotube film(CNTF)can be used for photocatalysis and water treatment due to its porous structure,good stability and excellent electrical properties.In this work,TiO_(2)/amorphous carbon/carbon nanotube film(TCC)composite with uniform structure was prepared by a simple atomization spraying method.Rhodamine B(RhB)was used to test the photocatalytic activity of TCC.TCC composite exhibits good photocatalytic activity under ultraviolet light.In particular,the degradation efficiency of rhodamine B(RhB)by TCC sprayed with 9 layers of TiO_(2)(9 TCC)increased by 1.45 times than of TiO_(2) under ultraviolet light.The enhanced photocatalytic activity of TCC is attributed to the CNTF,which can broaden the light response range of TCC and improve the migration efficiency of electrons.The existence of amorphous carbon will promote these advances.Moreover,the better hydrophilic properties would enhance the catalytic performance happened on the solid-liquid interface.Finally,the photocatalytic mechanism and degradation intermediates of the TCC composite were proposed.