不同的土地利用类型对所在流域内的水质产生不同的影响.本研究选取典型城市河流(京杭运河杭州段)和典型山林农业区河流(余英溪)为研究对象,利用多同位素技术(δD-H_(2)O,δ^(18)O-H_(2)O,δ^(15)N-NO^(-)_(3)和δ^(18)O-NO^(-)_(3))结...不同的土地利用类型对所在流域内的水质产生不同的影响.本研究选取典型城市河流(京杭运河杭州段)和典型山林农业区河流(余英溪)为研究对象,利用多同位素技术(δD-H_(2)O,δ^(18)O-H_(2)O,δ^(15)N-NO^(-)_(3)和δ^(18)O-NO^(-)_(3))结合稳定同位素(stable isotope analysis in R,SIAR)模型,对运河和余英溪的硝酸盐来源进行了识别并计算了各污染源的贡献率.结果表明,运河和余英溪均存在不同程度的氮污染,运河以NO^(-)_(3)-N和NH^(+)_4-N为主,余英溪以NO^(-)_(3)-N为主.运河和余英溪水的氢氧同位素(δD-H_(2)O,δ^(18)O-H_(2)O)沿当地大气降水线分布,两者存在明显线性关系(R^(2)=0.78),表明降水是这两条河流的主要补给源.运河和余英溪水体NO^(-)_(3)的氮同位素值(δ^(15)N-NO^(-)_(3))均小于15‰,说明这两条河流中主要存在硝化作用.部分运河水样NO^(-)_(3)的δ^(15)N-NO^(-)_(3)/δ^(18)O-NO^(-)_(3)值介于1.3~2.1之间且伴随着低浓度的DO和NO^(-)_(2),可见部分运河水体存在反硝化作用.运河水样δ^(15)N-NO^(-)_(3)值(均值:6.1‰)明显高于余英溪水体δ^(15)N-NO^(-)_(3)值(均值:2.3‰).各NO^(-)_(3)源对运河的贡献率:生活污水/粪肥(37.0%)>土壤氮(35.7%)>化学肥料(19.1%)>降水(8.2%);对余英溪的贡献率:化学肥料(46.1%)>土壤氮(22.8%)>降水(17.3%)>生活污水/粪肥(13.8%).在人类活动强度大的城市区域的河流(运河)中由于生活污水的零星排放和城市降雨径流的汇入导致生活污水/粪肥类氮源的污染明显加剧.化学肥料不可避免地成为山林农业区河流(余英溪)的主要污染源,可见农业面源污染带给所在区域水体的氮污染已非常严重.人类活动强度大的区域,降水对于水体NO^(-)_(3)的贡献降低.反硝化作用产生的同位素分馏对利用SIAR模型计算各NO^(-)_(3)源的贡献率产生不同程度的影响,其中对生活污水/粪肥和化学肥料的影响很大,对土壤氮的影响其次,对降水的影�展开更多
文摘运用氢氧同位素和水化学成分作为水循环过程的示踪剂,研究济源盆地地表水和地下水之间的转化关系.通过现场调查,系统地采集了该区浅层、中深层地下水和河水样品,并在实验室进行了水化学成分(K+、Na+、Ca2+、Mg2+、Cl-、SO2-4、HCO-3)和氢氧稳定同位素组分(D、18O)测定.基于水化学和同位素测定结果,揭示盆地地表水和地下水循环特征.水化学分析结果显示,济源盆地水体的水化学类型主要为HCO3-SO4-Ca-Mg,属于低矿化度水,浅层地下水和河水联系紧密,不同水体水化学成分主要受到岩石风化作用的影响.氢氧稳定同位素研究表明,大气降水是盆地不同水体的主要补给源,地下水在接受降水的补给后经过了不同程度的蒸发作用,中深层地下水受蒸发影响较小,浅层地下水和河水受蒸发影响较大.浅层地下水和河水的主要补给方式是地表大气降水的垂直渗入补给,中深层地下水接受北部太行山区的径流补给,补给高程为620—1185 m.
文摘不同的土地利用类型对所在流域内的水质产生不同的影响.本研究选取典型城市河流(京杭运河杭州段)和典型山林农业区河流(余英溪)为研究对象,利用多同位素技术(δD-H_(2)O,δ^(18)O-H_(2)O,δ^(15)N-NO^(-)_(3)和δ^(18)O-NO^(-)_(3))结合稳定同位素(stable isotope analysis in R,SIAR)模型,对运河和余英溪的硝酸盐来源进行了识别并计算了各污染源的贡献率.结果表明,运河和余英溪均存在不同程度的氮污染,运河以NO^(-)_(3)-N和NH^(+)_4-N为主,余英溪以NO^(-)_(3)-N为主.运河和余英溪水的氢氧同位素(δD-H_(2)O,δ^(18)O-H_(2)O)沿当地大气降水线分布,两者存在明显线性关系(R^(2)=0.78),表明降水是这两条河流的主要补给源.运河和余英溪水体NO^(-)_(3)的氮同位素值(δ^(15)N-NO^(-)_(3))均小于15‰,说明这两条河流中主要存在硝化作用.部分运河水样NO^(-)_(3)的δ^(15)N-NO^(-)_(3)/δ^(18)O-NO^(-)_(3)值介于1.3~2.1之间且伴随着低浓度的DO和NO^(-)_(2),可见部分运河水体存在反硝化作用.运河水样δ^(15)N-NO^(-)_(3)值(均值:6.1‰)明显高于余英溪水体δ^(15)N-NO^(-)_(3)值(均值:2.3‰).各NO^(-)_(3)源对运河的贡献率:生活污水/粪肥(37.0%)>土壤氮(35.7%)>化学肥料(19.1%)>降水(8.2%);对余英溪的贡献率:化学肥料(46.1%)>土壤氮(22.8%)>降水(17.3%)>生活污水/粪肥(13.8%).在人类活动强度大的城市区域的河流(运河)中由于生活污水的零星排放和城市降雨径流的汇入导致生活污水/粪肥类氮源的污染明显加剧.化学肥料不可避免地成为山林农业区河流(余英溪)的主要污染源,可见农业面源污染带给所在区域水体的氮污染已非常严重.人类活动强度大的区域,降水对于水体NO^(-)_(3)的贡献降低.反硝化作用产生的同位素分馏对利用SIAR模型计算各NO^(-)_(3)源的贡献率产生不同程度的影响,其中对生活污水/粪肥和化学肥料的影响很大,对土壤氮的影响其次,对降水的影�