The research described in this paper was carried out to predict the numerical hydrodynamic of multihull tunnel vessel at various speeds. The hull form of vessel is fairly generated by the tunnel hull form generator (T...The research described in this paper was carried out to predict the numerical hydrodynamic of multihull tunnel vessel at various speeds. The hull form of vessel is fairly generated by the tunnel hull form generator (THFG) code using the Non Uniform Rational B-Spline (NURBS) method. Then, the hydrodynamic simulation of high speed vessel is carried out based on finite volume discretization method using volume of fluid (VOF) model to consider free surface between water and air phases around the vessel. A dynamic mesh restructuring method is applied for grid generation regarding to the heave and pitch motions of vessel in each time step. Calculated drag and trim angles at various speeds are in good agreement with experimental data. More results are carried out at the speed 15 knots to understand the convergency of the pitch and heave motions.展开更多
文摘The research described in this paper was carried out to predict the numerical hydrodynamic of multihull tunnel vessel at various speeds. The hull form of vessel is fairly generated by the tunnel hull form generator (THFG) code using the Non Uniform Rational B-Spline (NURBS) method. Then, the hydrodynamic simulation of high speed vessel is carried out based on finite volume discretization method using volume of fluid (VOF) model to consider free surface between water and air phases around the vessel. A dynamic mesh restructuring method is applied for grid generation regarding to the heave and pitch motions of vessel in each time step. Calculated drag and trim angles at various speeds are in good agreement with experimental data. More results are carried out at the speed 15 knots to understand the convergency of the pitch and heave motions.