The hydration characteristics by thermal analysis (DTA) were determined, and an isothermal calorimeter (IC) was used to study the pastes. The experimental results indicate: (1) The main hydration products of SSC are C...The hydration characteristics by thermal analysis (DTA) were determined, and an isothermal calorimeter (IC) was used to study the pastes. The experimental results indicate: (1) The main hydration products of SSC are C-S-H (I) gel with a low Ca/Si ratio, crystalline Thomsonite-type and AFt-type phases containing certain alkali cations; (2) No phases of the AFm-type and high alkaline Ca (OH)(2) in SSC system could benefit the hydrated cements to improve its strength and durability; (3) Crystalline Thomsonite-type and AFt-type phases containing Na+ will greatly reduce free alkali and alleviate the harmness of alkali aggregate reaction (AAR) in SSC system; (4) Similar to ordinary Portland cement (OPC), the hydration process of SSC could be classified into five stage: initial, induction, acceleration, deceleration and decay; (5) Regardless of the activator used, the apparent activation energy is higher with the increased slag in cement system, and the rising temperature could promote the hydration of SSC.展开更多
Concrete structures may suffer considerable restraint stresses during their hardening period. This is caused by several deformation impacts, especially temperature field changings due to hydration heat and volume chan...Concrete structures may suffer considerable restraint stresses during their hardening period. This is caused by several deformation impacts, especially temperature field changings due to hydration heat and volume changes due to autogenous shrinkage. Mainly affected are massive concrete members, but also the application of new concrete types or the erection of outstanding constructions requires further investigations in this context. 3D-FEM analyses of hydration heat induced temperature development in combination with the well known shrinkage give sufficient results for the deformation impact. The according elastic restraint stresses can be determined with consideration of the concrete’s rising elastic modulus and the restraint degree of the system. But due to duration of the heat flow process, the height of restraint stresses is strongly dependent from the viscoelasticity of the concrete. The viscoelastic effects consist of many components constituted by changing material properties influencing themselves. In practice, different simplified approaches are available for considering this in calculations. Their implementation in time step analyses is not generally admitted and requires expertise. In contrast, present research develops material models needing specific input parameters for every use case. This contribution focuses on a practicable approach considering the superposition of the viscoelastic behaviour of every stress increment in time step FEM analysis. The differentiation between the pure viscoelastic material behaviour (as it is given in the codes for idealistic conditions like creep or relaxation) and the according viscoelastic system response (addicted to the systems variable restraint degree) allows the transfer of this model into practice. As one application example of this approach, the compatibility check and the FEM-based recalculation of the monitoring program of a massive power plant slab will be presented.展开更多
In order to veritably measure the first peak of hydration heat evolution that has been illustrated important in indicating cement behavior in early hydration, an improved way of water addition into cement in isotherma...In order to veritably measure the first peak of hydration heat evolution that has been illustrated important in indicating cement behavior in early hydration, an improved way of water addition into cement in isothermally calorimetric experiment is put forward. The experimental results indicated that: the magnitude of first peak of heat evolution varies from sample to sample, correlation between heat evolution during first peak of heat evolution and initial (as well as final) setting time is unsatisfactory when samples are not classified; while groups of sample classified based on strength grade represent satisfactory correlations, which indicating the existence of close relation between hydration heat evolution in much earlier hydration age and setting property of cement in rather later age. Importance of first peak in hydration heat evolution for understanding cement setting property and reasons for sample classification are also discussed in this paper.展开更多
基金Funded by the State"the Ninth-Five-year Plan "Item (96-535-33-5)
文摘The hydration characteristics by thermal analysis (DTA) were determined, and an isothermal calorimeter (IC) was used to study the pastes. The experimental results indicate: (1) The main hydration products of SSC are C-S-H (I) gel with a low Ca/Si ratio, crystalline Thomsonite-type and AFt-type phases containing certain alkali cations; (2) No phases of the AFm-type and high alkaline Ca (OH)(2) in SSC system could benefit the hydrated cements to improve its strength and durability; (3) Crystalline Thomsonite-type and AFt-type phases containing Na+ will greatly reduce free alkali and alleviate the harmness of alkali aggregate reaction (AAR) in SSC system; (4) Similar to ordinary Portland cement (OPC), the hydration process of SSC could be classified into five stage: initial, induction, acceleration, deceleration and decay; (5) Regardless of the activator used, the apparent activation energy is higher with the increased slag in cement system, and the rising temperature could promote the hydration of SSC.
文摘Concrete structures may suffer considerable restraint stresses during their hardening period. This is caused by several deformation impacts, especially temperature field changings due to hydration heat and volume changes due to autogenous shrinkage. Mainly affected are massive concrete members, but also the application of new concrete types or the erection of outstanding constructions requires further investigations in this context. 3D-FEM analyses of hydration heat induced temperature development in combination with the well known shrinkage give sufficient results for the deformation impact. The according elastic restraint stresses can be determined with consideration of the concrete’s rising elastic modulus and the restraint degree of the system. But due to duration of the heat flow process, the height of restraint stresses is strongly dependent from the viscoelasticity of the concrete. The viscoelastic effects consist of many components constituted by changing material properties influencing themselves. In practice, different simplified approaches are available for considering this in calculations. Their implementation in time step analyses is not generally admitted and requires expertise. In contrast, present research develops material models needing specific input parameters for every use case. This contribution focuses on a practicable approach considering the superposition of the viscoelastic behaviour of every stress increment in time step FEM analysis. The differentiation between the pure viscoelastic material behaviour (as it is given in the codes for idealistic conditions like creep or relaxation) and the according viscoelastic system response (addicted to the systems variable restraint degree) allows the transfer of this model into practice. As one application example of this approach, the compatibility check and the FEM-based recalculation of the monitoring program of a massive power plant slab will be presented.
基金Funded by Guangxi Science Foundation(No. 0639006)
文摘In order to veritably measure the first peak of hydration heat evolution that has been illustrated important in indicating cement behavior in early hydration, an improved way of water addition into cement in isothermally calorimetric experiment is put forward. The experimental results indicated that: the magnitude of first peak of heat evolution varies from sample to sample, correlation between heat evolution during first peak of heat evolution and initial (as well as final) setting time is unsatisfactory when samples are not classified; while groups of sample classified based on strength grade represent satisfactory correlations, which indicating the existence of close relation between hydration heat evolution in much earlier hydration age and setting property of cement in rather later age. Importance of first peak in hydration heat evolution for understanding cement setting property and reasons for sample classification are also discussed in this paper.