将生长抑素(ss)与乙肝表面抗原(HBsAg)融合基因(ss/HBs)克隆到痘苗病毒表达质粒pGJP-5中,通过与痘苗病毒天坛株体内重组和蚀斑挑选技术获得融合基因的重组病毒,它保持痘苗病毒原有的感染性,并能表达出 ss 和 HBsAg 产物.表达产物呈表面...将生长抑素(ss)与乙肝表面抗原(HBsAg)融合基因(ss/HBs)克隆到痘苗病毒表达质粒pGJP-5中,通过与痘苗病毒天坛株体内重组和蚀斑挑选技术获得融合基因的重组病毒,它保持痘苗病毒原有的感染性,并能表达出 ss 和 HBsAg 产物.表达产物呈表面带 ss 决定簇的 HBsAg 杂合颗粒,并分泌到感染细胞之培养液中.杂合颗粒的大小和密度与报道的 HBsAg 颗粒相似。本文还对该重组痘苗病毒可能作为 ss 活载体苗的前景进行了讨论。展开更多
The thermal expansion behavior of aluminum matrix composites reinforced with hybrid (nanometer and micrometer) Al2O3 particles was measured between 100 and 600℃ and compared to theoretical models. The results revea...The thermal expansion behavior of aluminum matrix composites reinforced with hybrid (nanometer and micrometer) Al2O3 particles was measured between 100 and 600℃ and compared to theoretical models. The results revealed that the nanoparticle concentration had significant effect on the thermal expansion behavior of the composites. For the composites with lower nanoparticle concentration, their coefficient of thermal expansion (CTE) is determined by a stress relaxation process. While for the composites with higher nanoparticle concentration, their CTE is determined by a percolation process.展开更多
Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant an...Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings.展开更多
Particles and natural organic matter (NOM) are two major concerns in surface water, which greatly influence the membrane filtration process. The objective of this article is to investigate the efiect of particles, N...Particles and natural organic matter (NOM) are two major concerns in surface water, which greatly influence the membrane filtration process. The objective of this article is to investigate the efiect of particles, NOM and their interaction on the submerged ultrafiltration (UF) membrane flux under conditions of solo UF and coagulation and PAC adsorption as the pretreatment of UF. Particles, NOM and their mixture were spiked in tap water to simulate raw water. Exponential relationship, (JP/JP0 = a×exp{-k[t-(n-1)T]}), was developed to quantify the normalized membrane flux dynamics during the filtration period and fitted the results well. In this equation, coefficient a was determined by the value of JP/JP0 at the beginning of a filtration cycle, refiecting the flux recovery after backwashing, that is, the irreversible fouling. The coefficient k refiected the trend of flux dynamics. Integrated total permeability (ΣJP) in one filtration period could be used as a quantified indicator for comparison of different hybrid membrane processes or under different scenarios. According to the results, there was an additive effect on membrane flux by NOM and particles during solo UF process. This additive fouling could be alleviated by coagulation pretreatment since particles helped the formation of flocs with coagulant, which further delayed the decrease of membrane flux and benefited flux recovery by backwashing. The addition of PAC also increased membrane flux by adsorbing NOM and improved flux recovery through backwashing.展开更多
This work aims to develop and characterize a hybrid composite material with two particles of the same size. As reinforcing particles, the hulls of palm nuts and coconut are chosen. Hybrid composite material composites...This work aims to develop and characterize a hybrid composite material with two particles of the same size. As reinforcing particles, the hulls of palm nuts and coconut are chosen. Hybrid composite material composites in the form of specimens were produced by molding at 10%, 20% and 30% mass fractions in various sizes (0.63<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm, 1.25</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm and 2.5</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm). The samples were physically characterized (water absorption rate, moisture content, actual, theoretical and apparent density) and mechanical in 3-point flexion. The main results are: the highest and minimum water absorption rate are respectively 3.57% and 0.67% for respectively particle sizes 1.25</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm (sample P10C30) and 0.67% in the size of 0.63</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm (sample P10C10). The moisture content varies from 0.64 to 7.14% respectively for the P20C20 (2.5 mm) and P10C30 (2.5 mm) samples. The maximum and minimum real density are 1340,518</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Kg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> and 1055.981</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Kg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">, for respectively the composites of particles sizes 1.25</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm (P20C10) and 0.63</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">mm (sample P20C20). The minim展开更多
Numerical calculations of resistive internal kink mode with effects of energetic particles(EPs) on HL-2A have been performed using the hybrid kinetic-MHD model inplemented in the NIMROD code.The m/n=1/1 resistive inte...Numerical calculations of resistive internal kink mode with effects of energetic particles(EPs) on HL-2A have been performed using the hybrid kinetic-MHD model inplemented in the NIMROD code.The m/n=1/1 resistive internal kink mode is unstable in MHD limit.However, with kinetic effects of energetic ions, a fishbone mode is excited with mode frequency around 10 kHz.We calculate the impact of resistivity on the growth rate and frequency of ion fishbone mode,and the results are in good agreement with the analytic solutions, which are obtained by solving the fishbone dispertion relation including resistivity effect.The effects of βfracand cut off velocity of EP on fishbone mode are calculated in detail, where βfracis the ratio of EP pressure to background plasma pressure.This work presents a clear explanation of the stabilizing effect of ECRH on ion fishbone, which is first observed on HL-2A.展开更多
文摘将生长抑素(ss)与乙肝表面抗原(HBsAg)融合基因(ss/HBs)克隆到痘苗病毒表达质粒pGJP-5中,通过与痘苗病毒天坛株体内重组和蚀斑挑选技术获得融合基因的重组病毒,它保持痘苗病毒原有的感染性,并能表达出 ss 和 HBsAg 产物.表达产物呈表面带 ss 决定簇的 HBsAg 杂合颗粒,并分泌到感染细胞之培养液中.杂合颗粒的大小和密度与报道的 HBsAg 颗粒相似。本文还对该重组痘苗病毒可能作为 ss 活载体苗的前景进行了讨论。
文摘The thermal expansion behavior of aluminum matrix composites reinforced with hybrid (nanometer and micrometer) Al2O3 particles was measured between 100 and 600℃ and compared to theoretical models. The results revealed that the nanoparticle concentration had significant effect on the thermal expansion behavior of the composites. For the composites with lower nanoparticle concentration, their coefficient of thermal expansion (CTE) is determined by a stress relaxation process. While for the composites with higher nanoparticle concentration, their CTE is determined by a percolation process.
基金Supported by National Natural Science Foundation of China(Grant No.51275395)Major National Basic Research Program of China(973 Program,Grant Nos.2009CB724304-2,2009CB724404)
文摘Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings.
基金supported by the National Key Technology R&D Program in the 11th-Five Year Plan of China (No.2006BAD01B03)
文摘Particles and natural organic matter (NOM) are two major concerns in surface water, which greatly influence the membrane filtration process. The objective of this article is to investigate the efiect of particles, NOM and their interaction on the submerged ultrafiltration (UF) membrane flux under conditions of solo UF and coagulation and PAC adsorption as the pretreatment of UF. Particles, NOM and their mixture were spiked in tap water to simulate raw water. Exponential relationship, (JP/JP0 = a×exp{-k[t-(n-1)T]}), was developed to quantify the normalized membrane flux dynamics during the filtration period and fitted the results well. In this equation, coefficient a was determined by the value of JP/JP0 at the beginning of a filtration cycle, refiecting the flux recovery after backwashing, that is, the irreversible fouling. The coefficient k refiected the trend of flux dynamics. Integrated total permeability (ΣJP) in one filtration period could be used as a quantified indicator for comparison of different hybrid membrane processes or under different scenarios. According to the results, there was an additive effect on membrane flux by NOM and particles during solo UF process. This additive fouling could be alleviated by coagulation pretreatment since particles helped the formation of flocs with coagulant, which further delayed the decrease of membrane flux and benefited flux recovery by backwashing. The addition of PAC also increased membrane flux by adsorbing NOM and improved flux recovery through backwashing.
文摘This work aims to develop and characterize a hybrid composite material with two particles of the same size. As reinforcing particles, the hulls of palm nuts and coconut are chosen. Hybrid composite material composites in the form of specimens were produced by molding at 10%, 20% and 30% mass fractions in various sizes (0.63<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm, 1.25</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm and 2.5</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm). The samples were physically characterized (water absorption rate, moisture content, actual, theoretical and apparent density) and mechanical in 3-point flexion. The main results are: the highest and minimum water absorption rate are respectively 3.57% and 0.67% for respectively particle sizes 1.25</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm (sample P10C30) and 0.67% in the size of 0.63</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm (sample P10C10). The moisture content varies from 0.64 to 7.14% respectively for the P20C20 (2.5 mm) and P10C30 (2.5 mm) samples. The maximum and minimum real density are 1340,518</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Kg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;"> and 1055.981</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Kg/m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">, for respectively the composites of particles sizes 1.25</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">mm (P20C10) and 0.63</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">mm (sample P20C20). The minim
基金supported by the National Magnetic Confinement Fusion Program (Nos.2014GB110000, 2014GB124002 and 2015GB101004)National Natural Science Foundation of China (Nos.11475058, 11875253 and 11775221)+1 种基金the Fundamental Research Funds for the Central Universities (No.WK3420000004)the supports from US Department of Energy (Nos.DE-FG0286ER53218 and DE-FC02-08ER54975)
文摘Numerical calculations of resistive internal kink mode with effects of energetic particles(EPs) on HL-2A have been performed using the hybrid kinetic-MHD model inplemented in the NIMROD code.The m/n=1/1 resistive internal kink mode is unstable in MHD limit.However, with kinetic effects of energetic ions, a fishbone mode is excited with mode frequency around 10 kHz.We calculate the impact of resistivity on the growth rate and frequency of ion fishbone mode,and the results are in good agreement with the analytic solutions, which are obtained by solving the fishbone dispertion relation including resistivity effect.The effects of βfracand cut off velocity of EP on fishbone mode are calculated in detail, where βfracis the ratio of EP pressure to background plasma pressure.This work presents a clear explanation of the stabilizing effect of ECRH on ion fishbone, which is first observed on HL-2A.