We evaluated the spatial and temporal patterns of forest fires in two fire seasons (March to June and September to November) from 1996 to 2010 in Jilin Province, China, using the Canadian Forest Fire Weather Index Sys...We evaluated the spatial and temporal patterns of forest fires in two fire seasons (March to June and September to November) from 1996 to 2010 in Jilin Province, China, using the Canadian Forest Fire Weather Index System. Fire data were obtained from the Provincial Fire Agency, and historical climate records of daily weather observations were collected from 36 weather stations in Jilin and its neighboring provinces. A linear regression model was used to analyze linear trends between climate and fire weather indices with time treated as an independent variable. Correlation analysis was used to detect correlations between fire frequency, areas burned, and fire weather indices. A thin-plate smooth spline model was used to interpolate the point data of 36 weather stations to generate a surface covering the whole province. Our analyses indicated fire frequency and areas burned were significantly correlated with fire weather indices. Overall, the Canadian Forest Fire Weather Index System appeared to be work well for determining the fire danger rating in Jilin Province. Also, our analyses indicated that in the forthcoming decades, the overall fire danger in March and April should decrease across the province, but the chance of a large fire in these months would increase. The fire danger in the fall fire season would increase in the future, and the chance of large fire would also increase. Historically, because most fires have occurred in the spring in Jilin Province, such a shift in the future fire danger between the two fire seasons would be beneficial for the province's fire management.展开更多
The purpose of this study was to determine a suitable model for investigating the effects of climate factors on the area burned by forest fire in the Tahe forest region, Daxing'an Mountains, in northeast China. The r...The purpose of this study was to determine a suitable model for investigating the effects of climate factors on the area burned by forest fire in the Tahe forest region, Daxing'an Mountains, in northeast China. The response variables were the area burned by lightning- caused fire, human-caused fire, and total burned area. The predictor variables were nine climate variables collected from the local weather station. Three regression models were utilized, including multiple linear regression, log- linear model (log-transformation on both response and predictor variables), and gamma-generalized linear model. The goodness-of-fit of the models were compared based on model fitting statistics such as R2, AIC, and RMSE. The results revealed that the gamma-generalized linear model was generally superior to both multiple linear regressionmodel and log-linear model for fitting the fire data. Further, the best models were selected based on the criteria that the climate variables were statistically significant at at = 0.05. The gamma best models indicated that maximum wind speed, precipitation, and days that rainfall greater than 0.1 mm had significant impacts on the area burned by the lightning-caused fire, while the mean temperature and minimum relative humidity were the .main drivers of the burned area caused by human activities. Overall, the total burned area by forest fire was significantly influenced by days that rainfall greater than 0.1 mm and minimum rela- tive humidity, indicating that the moisture condition of forest stands determine the burned area by forest fire.展开更多
基金financially supported by the National Natural Science Foundation of China(31470497)Project 2013-158,Jilin Provincial Education Department+1 种基金Project 2013-007,Jilin Provincial Forestry Departmentsupported by the Program for New Century Excellent Talents in the University(NCET-12-0726)
文摘We evaluated the spatial and temporal patterns of forest fires in two fire seasons (March to June and September to November) from 1996 to 2010 in Jilin Province, China, using the Canadian Forest Fire Weather Index System. Fire data were obtained from the Provincial Fire Agency, and historical climate records of daily weather observations were collected from 36 weather stations in Jilin and its neighboring provinces. A linear regression model was used to analyze linear trends between climate and fire weather indices with time treated as an independent variable. Correlation analysis was used to detect correlations between fire frequency, areas burned, and fire weather indices. A thin-plate smooth spline model was used to interpolate the point data of 36 weather stations to generate a surface covering the whole province. Our analyses indicated fire frequency and areas burned were significantly correlated with fire weather indices. Overall, the Canadian Forest Fire Weather Index System appeared to be work well for determining the fire danger rating in Jilin Province. Also, our analyses indicated that in the forthcoming decades, the overall fire danger in March and April should decrease across the province, but the chance of a large fire in these months would increase. The fire danger in the fall fire season would increase in the future, and the chance of large fire would also increase. Historically, because most fires have occurred in the spring in Jilin Province, such a shift in the future fire danger between the two fire seasons would be beneficial for the province's fire management.
基金funded by Asia-Pacific Forests Net(APFNET/2010/FPF/001)National Natural Science Foundation of China(Grant No.31400552)Forestry industry research special funds for public welfare projects(201404402)
文摘The purpose of this study was to determine a suitable model for investigating the effects of climate factors on the area burned by forest fire in the Tahe forest region, Daxing'an Mountains, in northeast China. The response variables were the area burned by lightning- caused fire, human-caused fire, and total burned area. The predictor variables were nine climate variables collected from the local weather station. Three regression models were utilized, including multiple linear regression, log- linear model (log-transformation on both response and predictor variables), and gamma-generalized linear model. The goodness-of-fit of the models were compared based on model fitting statistics such as R2, AIC, and RMSE. The results revealed that the gamma-generalized linear model was generally superior to both multiple linear regressionmodel and log-linear model for fitting the fire data. Further, the best models were selected based on the criteria that the climate variables were statistically significant at at = 0.05. The gamma best models indicated that maximum wind speed, precipitation, and days that rainfall greater than 0.1 mm had significant impacts on the area burned by the lightning-caused fire, while the mean temperature and minimum relative humidity were the .main drivers of the burned area caused by human activities. Overall, the total burned area by forest fire was significantly influenced by days that rainfall greater than 0.1 mm and minimum rela- tive humidity, indicating that the moisture condition of forest stands determine the burned area by forest fire.